Boundary dual of bulk local operators

Boundary dual of bulk local operators We provide a procedure to determine if a given nonlocal operator in a large-N holographic CFT is dual to a local bulk operator on the geometry associated with a particular code subspace of the CFT. This procedure does not presuppose knowledge of the bulk geometry. We are able to pick out local operators in a large region of the bulk, called the “localizable region,” that can extend beyond event horizons in certain cases. The method relies heavily on the quantum error correcting structure of AdS/CFT and, in particular, on entanglement wedge reconstruction. As a byproduct of this machinery, we are able to reconstruct the metric in the localizable region up to a conformal factor. This suggests a connection between our program and the recent light-cone cut approach to bulk reconstruction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Boundary dual of bulk local operators

Preview Only

Boundary dual of bulk local operators

Abstract

We provide a procedure to determine if a given nonlocal operator in a large-N holographic CFT is dual to a local bulk operator on the geometry associated with a particular code subspace of the CFT. This procedure does not presuppose knowledge of the bulk geometry. We are able to pick out local operators in a large region of the bulk, called the “localizable region,” that can extend beyond event horizons in certain cases. The method relies heavily on the quantum error correcting structure of AdS/CFT and, in particular, on entanglement wedge reconstruction. As a byproduct of this machinery, we are able to reconstruct the metric in the localizable region up to a conformal factor. This suggests a connection between our program and the recent light-cone cut approach to bulk reconstruction.
Loading next page...
 
/lp/aps_physical/boundary-dual-of-bulk-local-operators-7ZS5SjFY6N
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.026004
Publisher site
See Article on Publisher Site

Abstract

We provide a procedure to determine if a given nonlocal operator in a large-N holographic CFT is dual to a local bulk operator on the geometry associated with a particular code subspace of the CFT. This procedure does not presuppose knowledge of the bulk geometry. We are able to pick out local operators in a large region of the bulk, called the “localizable region,” that can extend beyond event horizons in certain cases. The method relies heavily on the quantum error correcting structure of AdS/CFT and, in particular, on entanglement wedge reconstruction. As a byproduct of this machinery, we are able to reconstruct the metric in the localizable region up to a conformal factor. This suggests a connection between our program and the recent light-cone cut approach to bulk reconstruction.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off