Born-Infeld gravity with a Brans-Dicke scalar

Born-Infeld gravity with a Brans-Dicke scalar Recently proposed Born-Infeld (BI) theories of gravity assume a constant BI parameter (κ). However, no clear consensus exists on the sign and value of κ. Recalling the Brans-Dicke (BD) approach, where a scalar field was used to generate the gravitational constant G, we suggest an extension of Born-Infeld gravity with a similar Brans-Dicke flavor. Thus, a new action, with κ elevated to a spacetime dependent real scalar field, is proposed. We illustrate this new theory in a cosmological setting with pressureless dust and radiation as matter. Assuming a functional form of κ(t), we numerically obtain the scale factor evolution and other details of the background cosmology. It is known that BI gravity differs from general relativity (GR) in the strong-field regime but reduces to GR for intermediate and weak fields. Our studies in cosmology demonstrate how, with this new, scalar-tensor BI gravity, deviations from GR, as well as usual BI gravity, may arise in the weak-field regime too. For example, we note a late-time acceleration without any dark energy contribution. Apart from such qualitative differences, we note that fixing the sign and value of κ is no longer a necessity in this theory, though the origin of the BD scalar does remain an open question. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Born-Infeld gravity with a Brans-Dicke scalar

Preview Only

Born-Infeld gravity with a Brans-Dicke scalar

Abstract

Recently proposed Born-Infeld (BI) theories of gravity assume a constant BI parameter (κ). However, no clear consensus exists on the sign and value of κ. Recalling the Brans-Dicke (BD) approach, where a scalar field was used to generate the gravitational constant G, we suggest an extension of Born-Infeld gravity with a similar Brans-Dicke flavor. Thus, a new action, with κ elevated to a spacetime dependent real scalar field, is proposed. We illustrate this new theory in a cosmological setting with pressureless dust and radiation as matter. Assuming a functional form of κ(t), we numerically obtain the scale factor evolution and other details of the background cosmology. It is known that BI gravity differs from general relativity (GR) in the strong-field regime but reduces to GR for intermediate and weak fields. Our studies in cosmology demonstrate how, with this new, scalar-tensor BI gravity, deviations from GR, as well as usual BI gravity, may arise in the weak-field regime too. For example, we note a late-time acceleration without any dark energy contribution. Apart from such qualitative differences, we note that fixing the sign and value of κ is no longer a necessity in this theory, though the origin of the BD scalar does remain an open question.
Loading next page...
 
/lp/aps_physical/born-infeld-gravity-with-a-brans-dicke-scalar-SvSqqsAJLE
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024050
Publisher site
See Article on Publisher Site

Abstract

Recently proposed Born-Infeld (BI) theories of gravity assume a constant BI parameter (κ). However, no clear consensus exists on the sign and value of κ. Recalling the Brans-Dicke (BD) approach, where a scalar field was used to generate the gravitational constant G, we suggest an extension of Born-Infeld gravity with a similar Brans-Dicke flavor. Thus, a new action, with κ elevated to a spacetime dependent real scalar field, is proposed. We illustrate this new theory in a cosmological setting with pressureless dust and radiation as matter. Assuming a functional form of κ(t), we numerically obtain the scale factor evolution and other details of the background cosmology. It is known that BI gravity differs from general relativity (GR) in the strong-field regime but reduces to GR for intermediate and weak fields. Our studies in cosmology demonstrate how, with this new, scalar-tensor BI gravity, deviations from GR, as well as usual BI gravity, may arise in the weak-field regime too. For example, we note a late-time acceleration without any dark energy contribution. Apart from such qualitative differences, we note that fixing the sign and value of κ is no longer a necessity in this theory, though the origin of the BD scalar does remain an open question.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off