Bistability and squeezing of the librational mode of an optically trapped nanoparticle

Bistability and squeezing of the librational mode of an optically trapped nanoparticle We systematically investigate the bistable behavior and squeezing property of the librational mode of a levitated nonspherical nanoparticle trapped by laser beams. By expanding the librational potential to the fourth order of the librational angle θ, we find that the nonlinear coefficient of this mode is dependent only on the size and material of nanoparticle, but independent of trapping potential shape. The bistability and hysteresis are displayed when the driving frequency is red detuned to the librational mode. In the blue-detuned region, we have studied squeezing of the variance of librational mode in detail, which has potential application for measurement of angle and angular momentum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Bistability and squeezing of the librational mode of an optically trapped nanoparticle

Preview Only

Bistability and squeezing of the librational mode of an optically trapped nanoparticle

Abstract

We systematically investigate the bistable behavior and squeezing property of the librational mode of a levitated nonspherical nanoparticle trapped by laser beams. By expanding the librational potential to the fourth order of the librational angle θ, we find that the nonlinear coefficient of this mode is dependent only on the size and material of nanoparticle, but independent of trapping potential shape. The bistability and hysteresis are displayed when the driving frequency is red detuned to the librational mode. In the blue-detuned region, we have studied squeezing of the variance of librational mode in detail, which has potential application for measurement of angle and angular momentum.
Loading next page...
 
/lp/aps_physical/bistability-and-squeezing-of-the-librational-mode-of-an-optically-FnvwmpsH1A
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013837
Publisher site
See Article on Publisher Site

Abstract

We systematically investigate the bistable behavior and squeezing property of the librational mode of a levitated nonspherical nanoparticle trapped by laser beams. By expanding the librational potential to the fourth order of the librational angle θ, we find that the nonlinear coefficient of this mode is dependent only on the size and material of nanoparticle, but independent of trapping potential shape. The bistability and hysteresis are displayed when the driving frequency is red detuned to the librational mode. In the blue-detuned region, we have studied squeezing of the variance of librational mode in detail, which has potential application for measurement of angle and angular momentum.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 19, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off