Bell Inequalities Tailored to Maximally Entangled States

Bell Inequalities Tailored to Maximally Entangled States Bell inequalities have traditionally been used to demonstrate that quantum theory is nonlocal, in the sense that there exist correlations generated from composite quantum states that cannot be explained by means of local hidden variables. With the advent of device-independent quantum information protocols, Bell inequalities have gained an additional role as certificates of relevant quantum properties. In this work, we consider the problem of designing Bell inequalities that are tailored to detect maximally entangled states. We introduce a class of Bell inequalities valid for an arbitrary number of measurements and results, derive analytically their tight classical, nonsignaling, and quantum bounds and prove that the latter is attained by maximally entangled states. Our inequalities can therefore find an application in device-independent protocols requiring maximally entangled states. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Bell Inequalities Tailored to Maximally Entangled States

Preview Only

Bell Inequalities Tailored to Maximally Entangled States

Abstract

Bell inequalities have traditionally been used to demonstrate that quantum theory is nonlocal, in the sense that there exist correlations generated from composite quantum states that cannot be explained by means of local hidden variables. With the advent of device-independent quantum information protocols, Bell inequalities have gained an additional role as certificates of relevant quantum properties. In this work, we consider the problem of designing Bell inequalities that are tailored to detect maximally entangled states. We introduce a class of Bell inequalities valid for an arbitrary number of measurements and results, derive analytically their tight classical, nonsignaling, and quantum bounds and prove that the latter is attained by maximally entangled states. Our inequalities can therefore find an application in device-independent protocols requiring maximally entangled states.
Loading next page...
 
/lp/aps_physical/bell-inequalities-tailored-to-maximally-entangled-states-tZBZlIWbs2
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.040402
Publisher site
See Article on Publisher Site

Abstract

Bell inequalities have traditionally been used to demonstrate that quantum theory is nonlocal, in the sense that there exist correlations generated from composite quantum states that cannot be explained by means of local hidden variables. With the advent of device-independent quantum information protocols, Bell inequalities have gained an additional role as certificates of relevant quantum properties. In this work, we consider the problem of designing Bell inequalities that are tailored to detect maximally entangled states. We introduce a class of Bell inequalities valid for an arbitrary number of measurements and results, derive analytically their tight classical, nonsignaling, and quantum bounds and prove that the latter is attained by maximally entangled states. Our inequalities can therefore find an application in device-independent protocols requiring maximally entangled states.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial