Anomalous magnetism in hydrogenated graphene

Anomalous magnetism in hydrogenated graphene We revisit the problem of local moment formation in graphene due to chemisorption of individual atomic hydrogen or other analogous sp3 covalent functionalizations. We describe graphene with the single-orbital Hubbard model, so that the H chemisorption is equivalent to a vacancy in the honeycomb lattice. To circumvent artifacts related to periodic unit cells, we use either huge simulation cells of up to 8×105 sites, or an embedding scheme that allows the modeling of a single vacancy in an otherwise pristine infinite honeycomb lattice. We find three results that stress the anomalous nature of the magnetic moment (m) in this system. First, in the noninteracting (U=0) zero-temperature (T=0) case, the m(B) is a continuous smooth curve with divergent susceptibility, different from the stepwise constant function found for single unpaired spins in a gapped system. Second, for U=0 and T>0, the linear susceptibility follows a power law ∝T−α with an exponent of α=0.77 different from the conventional Curie law. For U>0, in the mean-field approximation, the integrated moment is smaller than m=1μB, in contrast with results using periodic unit cells. These three results highlight the fact that the magnetic response of the local moment induced by sp3 functionalizations in graphene is different from that of local moments in gapped systems, for which the magnetic moment is quantized and follows a Curie law, and from Pauli paramagnetism in conductors, for which linear susceptibility can be defined at T=0. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Anomalous magnetism in hydrogenated graphene

Preview Only

Anomalous magnetism in hydrogenated graphene

Abstract

We revisit the problem of local moment formation in graphene due to chemisorption of individual atomic hydrogen or other analogous sp3 covalent functionalizations. We describe graphene with the single-orbital Hubbard model, so that the H chemisorption is equivalent to a vacancy in the honeycomb lattice. To circumvent artifacts related to periodic unit cells, we use either huge simulation cells of up to 8×105 sites, or an embedding scheme that allows the modeling of a single vacancy in an otherwise pristine infinite honeycomb lattice. We find three results that stress the anomalous nature of the magnetic moment (m) in this system. First, in the noninteracting (U=0) zero-temperature (T=0) case, the m(B) is a continuous smooth curve with divergent susceptibility, different from the stepwise constant function found for single unpaired spins in a gapped system. Second, for U=0 and T>0, the linear susceptibility follows a power law ∝T−α with an exponent of α=0.77 different from the conventional Curie law. For U>0, in the mean-field approximation, the integrated moment is smaller than m=1μB, in contrast with results using periodic unit cells. These three results highlight the fact that the magnetic response of the local moment induced by sp3 functionalizations in graphene is different from that of local moments in gapped systems, for which the magnetic moment is quantized and follows a Curie law, and from Pauli paramagnetism in conductors, for which linear susceptibility can be defined at T=0.
Loading next page...
 
/lp/aps_physical/anomalous-magnetism-in-hydrogenated-graphene-u0jJ6BibtV
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024403
Publisher site
See Article on Publisher Site

Abstract

We revisit the problem of local moment formation in graphene due to chemisorption of individual atomic hydrogen or other analogous sp3 covalent functionalizations. We describe graphene with the single-orbital Hubbard model, so that the H chemisorption is equivalent to a vacancy in the honeycomb lattice. To circumvent artifacts related to periodic unit cells, we use either huge simulation cells of up to 8×105 sites, or an embedding scheme that allows the modeling of a single vacancy in an otherwise pristine infinite honeycomb lattice. We find three results that stress the anomalous nature of the magnetic moment (m) in this system. First, in the noninteracting (U=0) zero-temperature (T=0) case, the m(B) is a continuous smooth curve with divergent susceptibility, different from the stepwise constant function found for single unpaired spins in a gapped system. Second, for U=0 and T>0, the linear susceptibility follows a power law ∝T−α with an exponent of α=0.77 different from the conventional Curie law. For U>0, in the mean-field approximation, the integrated moment is smaller than m=1μB, in contrast with results using periodic unit cells. These three results highlight the fact that the magnetic response of the local moment induced by sp3 functionalizations in graphene is different from that of local moments in gapped systems, for which the magnetic moment is quantized and follows a Curie law, and from Pauli paramagnetism in conductors, for which linear susceptibility can be defined at T=0.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off