Anomalous Hall Effect in Type-I Weyl Metals

Anomalous Hall Effect in Type-I Weyl Metals We study the ac anomalous Hall conductivity σxy(ω) of a Weyl semimetal with broken time-reversal symmetry. Even in the absence of free carriers these materials exhibit a “universal” anomalous Hall response determined solely by the locations of the Weyl nodes. We show that the free carriers, which are generically present in an undoped Weyl semimetal, give an additional contribution to the ac Hall conductivity. We elucidate the phy146sical mechanism of the effect and develop a microscopic theory of the free carrier contribution to σxy(ω). The latter can be expressed in terms of a small number of parameters (the electron velocity matrix, the Fermi energy μ, and the “tilt” of the Weyl cone). The resulting σxy(ω) has resonant features at ω∼2μ which may be used to separate the free carrier response from the filled-band response using, for example, Kerr effect measurements. This may serve as a diagnostic tool to characterize the doping of individual valleys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Anomalous Hall Effect in Type-I Weyl Metals

Preview Only

Anomalous Hall Effect in Type-I Weyl Metals

Abstract

We study the ac anomalous Hall conductivity σxy(ω) of a Weyl semimetal with broken time-reversal symmetry. Even in the absence of free carriers these materials exhibit a “universal” anomalous Hall response determined solely by the locations of the Weyl nodes. We show that the free carriers, which are generically present in an undoped Weyl semimetal, give an additional contribution to the ac Hall conductivity. We elucidate the phy146sical mechanism of the effect and develop a microscopic theory of the free carrier contribution to σxy(ω). The latter can be expressed in terms of a small number of parameters (the electron velocity matrix, the Fermi energy μ, and the “tilt” of the Weyl cone). The resulting σxy(ω) has resonant features at ω∼2μ which may be used to separate the free carrier response from the filled-band response using, for example, Kerr effect measurements. This may serve as a diagnostic tool to characterize the doping of individual valleys.
Loading next page...
 
/lp/aps_physical/anomalous-hall-effect-in-type-i-weyl-metals-fJLNVTDmEw
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.036601
Publisher site
See Article on Publisher Site

Abstract

We study the ac anomalous Hall conductivity σxy(ω) of a Weyl semimetal with broken time-reversal symmetry. Even in the absence of free carriers these materials exhibit a “universal” anomalous Hall response determined solely by the locations of the Weyl nodes. We show that the free carriers, which are generically present in an undoped Weyl semimetal, give an additional contribution to the ac Hall conductivity. We elucidate the phy146sical mechanism of the effect and develop a microscopic theory of the free carrier contribution to σxy(ω). The latter can be expressed in terms of a small number of parameters (the electron velocity matrix, the Fermi energy μ, and the “tilt” of the Weyl cone). The resulting σxy(ω) has resonant features at ω∼2μ which may be used to separate the free carrier response from the filled-band response using, for example, Kerr effect measurements. This may serve as a diagnostic tool to characterize the doping of individual valleys.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off