Analytic modeling of structures in attosecond transient-absorption spectra

Analytic modeling of structures in attosecond transient-absorption spectra Attosecond transient-absorption spectroscopy (ATAS) is an established method for exploring electron dynamics on the subfemtosecond time scale. ATAS spectra contain certain ubiquitous features, such as oscillating fringes, light-induced structures, and hyperbolic sidebands, representing physical processes. We derive closed analytical expressions describing these features, based on a three-level system responding adiabatically to the influence of an infrared field in conjunction with an extreme ultraviolet pulse, and use He to illustrate the theory. The validity of the formulas is substantiated by comparing their predictions with spectra calculated numerically by the time-dependent Schrödinger equation. The closed analytical forms and the details of their derivation resolve the origins of the features. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Analytic modeling of structures in attosecond transient-absorption spectra

Preview Only

Analytic modeling of structures in attosecond transient-absorption spectra

Abstract

Attosecond transient-absorption spectroscopy (ATAS) is an established method for exploring electron dynamics on the subfemtosecond time scale. ATAS spectra contain certain ubiquitous features, such as oscillating fringes, light-induced structures, and hyperbolic sidebands, representing physical processes. We derive closed analytical expressions describing these features, based on a three-level system responding adiabatically to the influence of an infrared field in conjunction with an extreme ultraviolet pulse, and use He to illustrate the theory. The validity of the formulas is substantiated by comparing their predictions with spectra calculated numerically by the time-dependent Schrödinger equation. The closed analytical forms and the details of their derivation resolve the origins of the features.
Loading next page...
 
/lp/aps_physical/analytic-modeling-of-structures-in-attosecond-transient-absorption-LuZTWGDIde
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013430
Publisher site
See Article on Publisher Site

Abstract

Attosecond transient-absorption spectroscopy (ATAS) is an established method for exploring electron dynamics on the subfemtosecond time scale. ATAS spectra contain certain ubiquitous features, such as oscillating fringes, light-induced structures, and hyperbolic sidebands, representing physical processes. We derive closed analytical expressions describing these features, based on a three-level system responding adiabatically to the influence of an infrared field in conjunction with an extreme ultraviolet pulse, and use He to illustrate the theory. The validity of the formulas is substantiated by comparing their predictions with spectra calculated numerically by the time-dependent Schrödinger equation. The closed analytical forms and the details of their derivation resolve the origins of the features.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial