Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction

Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman integrals with any configuration of internal and external masses, and in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction

Preview Only

Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction

Abstract

We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman integrals with any configuration of internal and external masses, and in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.
Loading next page...
 
/lp/aps_physical/algebraic-structure-of-cut-feynman-integrals-and-the-diagrammatic-J0fG5z8ng5
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.051601
Publisher site
See Article on Publisher Site

Abstract

We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman integrals with any configuration of internal and external masses, and in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off