Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with... We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)–mode and transverse magnetic (TM)–mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

Preview Only

Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

Abstract

We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)–mode and transverse magnetic (TM)–mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.
Loading next page...
 
/lp/aps_physical/adaptive-numerical-algorithms-to-simulate-the-dynamical-casimir-effect-89vqS53Ebc
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.013307
Publisher site
See Article on Publisher Site

Abstract

We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)–mode and transverse magnetic (TM)–mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off