Accurate formation energies of charged defects in solids: A systematic approach

Accurate formation energies of charged defects in solids: A systematic approach Defects on surfaces of semiconductors have a strong effect on their reactivity and catalytic properties. The concentration of different charge states of defects is determined by their formation energies. First-principles calculations are an important tool for computing defect formation energies and for studying the microscopic environment of the defect. The main problem associated with the widely used supercell method in these calculations is the error in the electrostatic energy, which is especially pronounced in calculations that involve surface slabs and two-dimensional materials. We present an internally consistent approach for calculating defect formation energies in inhomogeneous and anisotropic dielectric environments and demonstrate its applicability to the cases of the positively charged Cl vacancy on the NaCl (100) surface and the negatively charged S vacancy in monolayer MoS2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Accurate formation energies of charged defects in solids: A systematic approach

Preview Only

Accurate formation energies of charged defects in solids: A systematic approach

Abstract

Defects on surfaces of semiconductors have a strong effect on their reactivity and catalytic properties. The concentration of different charge states of defects is determined by their formation energies. First-principles calculations are an important tool for computing defect formation energies and for studying the microscopic environment of the defect. The main problem associated with the widely used supercell method in these calculations is the error in the electrostatic energy, which is especially pronounced in calculations that involve surface slabs and two-dimensional materials. We present an internally consistent approach for calculating defect formation energies in inhomogeneous and anisotropic dielectric environments and demonstrate its applicability to the cases of the positively charged Cl vacancy on the NaCl (100) surface and the negatively charged S vacancy in monolayer MoS2.
Loading next page...
 
/lp/aps_physical/accurate-formation-energies-of-charged-defects-in-solids-a-systematic-udMGI0Y9fY
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.235310
Publisher site
See Article on Publisher Site

Abstract

Defects on surfaces of semiconductors have a strong effect on their reactivity and catalytic properties. The concentration of different charge states of defects is determined by their formation energies. First-principles calculations are an important tool for computing defect formation energies and for studying the microscopic environment of the defect. The main problem associated with the widely used supercell method in these calculations is the error in the electrostatic energy, which is especially pronounced in calculations that involve surface slabs and two-dimensional materials. We present an internally consistent approach for calculating defect formation energies in inhomogeneous and anisotropic dielectric environments and demonstrate its applicability to the cases of the positively charged Cl vacancy on the NaCl (100) surface and the negatively charged S vacancy in monolayer MoS2.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off