MICRONEUROGRAPHY FROM THE POSTERIOR TIBIAL NERVE: A NOVEL METHOD OF RECORDING ACTIVITY FROM THE FOOT IN FREELY STANDING HUMANS

MICRONEUROGRAPHY FROM THE POSTERIOR TIBIAL NERVE: A NOVEL METHOD OF RECORDING ACTIVITY FROM THE... The posterior tibial nerve, located behind the medial malleolus of the ankle, supplies the intrinsic muscles of the foot and most of the skin of the sole. We describe a novel approach for recording from this nerve via a percutaneously inserted tungsten microelectrode, and provide examples of recordings from presumed muscle spindle endings recorded in freely-standing human subjects. The fact that the angular excursions of the ankle joint are small as the foot is loaded during the transition from the seated position to standing means that one can obtain stable recordings of neural traffic in unloaded, loaded and freely standing conditions. We conclude that this novel approach will allow studies that will increase our understanding of the roles of muscle and cutaneous afferents in the foot in the control of upright posture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

MICRONEUROGRAPHY FROM THE POSTERIOR TIBIAL NERVE: A NOVEL METHOD OF RECORDING ACTIVITY FROM THE FOOT IN FREELY STANDING HUMANS

Loading next page...
 
/lp/aps/microneurography-from-the-posterior-tibial-nerve-a-novel-method-of-epu24xE8Tu
ISSN
0022-3077
eISSN
1522-1598
D.O.I.
10.1152/jn.00937.2017
Publisher site
See Article on Publisher Site

Abstract

The posterior tibial nerve, located behind the medial malleolus of the ankle, supplies the intrinsic muscles of the foot and most of the skin of the sole. We describe a novel approach for recording from this nerve via a percutaneously inserted tungsten microelectrode, and provide examples of recordings from presumed muscle spindle endings recorded in freely-standing human subjects. The fact that the angular excursions of the ankle joint are small as the foot is loaded during the transition from the seated position to standing means that one can obtain stable recordings of neural traffic in unloaded, loaded and freely standing conditions. We conclude that this novel approach will allow studies that will increase our understanding of the roles of muscle and cutaneous afferents in the foot in the control of upright posture.

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off