Transparent Perovskite Barium Stannate with High Electron Mobility and Thermal Stability

Transparent Perovskite Barium Stannate with High Electron Mobility and Thermal Stability Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics components. Perovskite barium stannate (BaSnO3), a new TCO or TOS system, is a potential platform for realizing optoelectronic devices and observing novel electronic quantum states due to its high electron mobility, excellent thermal stability, high transparency, structural versatility, and flexible doping controllability. This article reviews recent progress in the doped BaSnO3 system, discussing the wide range of physical properties, electron-scattering mechanism, and demonstration of key semiconducting devices such as pn diodes and field-effect transistors. Moreover, we discuss the pathways to achieving two-dimensional electron gases at the interface between BaSnO3 and other perovskite oxides and describe remaining challenges for observing novel quantum phenomena at the heterointerface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Materials Research Annual Reviews

Transparent Perovskite Barium Stannate with High Electron Mobility and Thermal Stability

Loading next page...
 
/lp/annual_reviews/transparent-perovskite-barium-stannate-with-high-electron-mobility-and-VN4fAXvLiT
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
1531-7331
eISSN
1545-4118
D.O.I.
10.1146/annurev-matsci-070616-124109
Publisher site
See Article on Publisher Site

Abstract

Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics components. Perovskite barium stannate (BaSnO3), a new TCO or TOS system, is a potential platform for realizing optoelectronic devices and observing novel electronic quantum states due to its high electron mobility, excellent thermal stability, high transparency, structural versatility, and flexible doping controllability. This article reviews recent progress in the doped BaSnO3 system, discussing the wide range of physical properties, electron-scattering mechanism, and demonstration of key semiconducting devices such as pn diodes and field-effect transistors. Moreover, we discuss the pathways to achieving two-dimensional electron gases at the interface between BaSnO3 and other perovskite oxides and describe remaining challenges for observing novel quantum phenomena at the heterointerface.

Journal

Annual Review of Materials ResearchAnnual Reviews

Published: Jul 3, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off