The Candidatus LiberibacterHost Interface: Insights into Pathogenesis Mechanisms and Disease Control

The Candidatus LiberibacterHost Interface: Insights into Pathogenesis Mechanisms and Disease Control Candidatus Liberibacter species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the Ca. Liberibacter species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of Ca. Liberibacter species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs andor other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response andor systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional HuanglongbingAsian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Phytopathology Annual Reviews

The Candidatus LiberibacterHost Interface: Insights into Pathogenesis Mechanisms and Disease Control

Loading next page...
 
/lp/annual_reviews/the-candidatus-liberibacterhost-interface-insights-into-pathogenesis-BZvaiR3c0F
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0066-4286
eISSN
1545-2107
D.O.I.
10.1146/annurev-phyto-080516-035513
Publisher site
See Article on Publisher Site

Abstract

Candidatus Liberibacter species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the Ca. Liberibacter species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of Ca. Liberibacter species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs andor other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response andor systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional HuanglongbingAsian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions.

Journal

Annual Review of PhytopathologyAnnual Reviews

Published: Aug 4, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off