Surveillance to Inform Control of Emerging Plant Diseases: An Epidemiological Perspective

Surveillance to Inform Control of Emerging Plant Diseases: An Epidemiological Perspective The rise in emerging pathogens and strains has led to increased calls for more effective surveillance in plant health. We show how epidemiological insights about the dynamics of disease spread can improve the targeting of when and where to sample. We outline some relatively simple but powerful statistical approaches to inform surveillance and describe how they can be adapted to include epidemiological information. This enables us to address questions such as: Following the first report of an invading pathogen, what is the likely incidence of disease? If no cases of disease have been found, how certain can we be that the disease was not simply missed by chance? We illustrate the use of spatially explicit stochastic models to optimize targeting of surveillance and control resources. Finally, we discuss how modern detection and diagnostic technologies as well as information from passive surveillance networks (e.g., citizen science) can be integrated into surveillance strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Phytopathology Annual Reviews

Surveillance to Inform Control of Emerging Plant Diseases: An Epidemiological Perspective

Loading next page...
 
/lp/annual_reviews/surveillance-to-inform-control-of-emerging-plant-diseases-an-49jIvnnEeZ
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0066-4286
eISSN
1545-2107
D.O.I.
10.1146/annurev-phyto-080516-035334
Publisher site
See Article on Publisher Site

Abstract

The rise in emerging pathogens and strains has led to increased calls for more effective surveillance in plant health. We show how epidemiological insights about the dynamics of disease spread can improve the targeting of when and where to sample. We outline some relatively simple but powerful statistical approaches to inform surveillance and describe how they can be adapted to include epidemiological information. This enables us to address questions such as: Following the first report of an invading pathogen, what is the likely incidence of disease? If no cases of disease have been found, how certain can we be that the disease was not simply missed by chance? We illustrate the use of spatially explicit stochastic models to optimize targeting of surveillance and control resources. Finally, we discuss how modern detection and diagnostic technologies as well as information from passive surveillance networks (e.g., citizen science) can be integrated into surveillance strategies.

Journal

Annual Review of PhytopathologyAnnual Reviews

Published: Aug 4, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off