Plant Evolution and Climate Over Geological Timescales

Plant Evolution and Climate Over Geological Timescales The terrestrial vegetation is unambiguously an important factor in the climate system, modulating the exchange of energy, momentum, water vapor, and other trace gases between land and atmosphere. Here, we review the evolution of the terrestrial flora from the Proterozoic through to the Neogene at three distinct scalesthe overall evolution of floral composition, the evolution of plant physiology, and the evolution of landscape occupation both spatially and seasonallyall in the context of how the vegetation may have influenced climate through time and which deep-time evolutionary transitions may have had the greatest effect. Our focus is upon the direct impacts of the vegetation on temperature and precipitation, but we also consider the indirect impacts of plants on climate via atmospheric composition. We argue that the times of greatest change in plant climate feedbacks are likely to have been the Carboniferous and the early Paleogene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Earth and Planetary Sciences Annual Reviews

Plant Evolution and Climate Over Geological Timescales

Loading next page...
 
/lp/annual_reviews/plant-evolution-and-climate-over-geological-timescales-k7ZUxN909k
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0084-6597
eISSN
1545-4495
D.O.I.
10.1146/annurev-earth-063016-015629
Publisher site
See Article on Publisher Site

Abstract

The terrestrial vegetation is unambiguously an important factor in the climate system, modulating the exchange of energy, momentum, water vapor, and other trace gases between land and atmosphere. Here, we review the evolution of the terrestrial flora from the Proterozoic through to the Neogene at three distinct scalesthe overall evolution of floral composition, the evolution of plant physiology, and the evolution of landscape occupation both spatially and seasonallyall in the context of how the vegetation may have influenced climate through time and which deep-time evolutionary transitions may have had the greatest effect. Our focus is upon the direct impacts of the vegetation on temperature and precipitation, but we also consider the indirect impacts of plants on climate via atmospheric composition. We argue that the times of greatest change in plant climate feedbacks are likely to have been the Carboniferous and the early Paleogene.

Journal

Annual Review of Earth and Planetary SciencesAnnual Reviews

Published: Aug 30, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off