Neuroprotection in Glaucoma: Animal Models and Clinical Trials

Neuroprotection in Glaucoma: Animal Models and Clinical Trials Glaucoma is a progressive neurodegenerative disease that frequently results in irreversible blindness. Glaucoma causes death of retinal ganglion cells (RGCs) and their axons in the optic nerve, resulting in visual field deficits and eventual loss of visual acuity. Glaucoma is a complex optic neuropathy, and a successful strategy for its treatment requires not only better management of known risk factors such as elevated intraocular pressure and the development of improved tools for detecting RGC injury but also treatments that address this injury (i.e., neuroprotection). Experimental models of glaucoma provide insight into the cellular and molecular mechanisms of glaucomatous optic neuropathy and aid the development of neuroprotective therapies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual review of vision science Annual Reviews

Neuroprotection in Glaucoma: Animal Models and Clinical Trials

Loading next page...
 
/lp/annual_reviews/neuroprotection-in-glaucoma-animal-models-and-clinical-trials-6TzupVJc0H
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
2374-4642
eISSN
2374-4650
D.O.I.
10.1146/annurev-vision-102016-061422
Publisher site
See Article on Publisher Site

Abstract

Glaucoma is a progressive neurodegenerative disease that frequently results in irreversible blindness. Glaucoma causes death of retinal ganglion cells (RGCs) and their axons in the optic nerve, resulting in visual field deficits and eventual loss of visual acuity. Glaucoma is a complex optic neuropathy, and a successful strategy for its treatment requires not only better management of known risk factors such as elevated intraocular pressure and the development of improved tools for detecting RGC injury but also treatments that address this injury (i.e., neuroprotection). Experimental models of glaucoma provide insight into the cellular and molecular mechanisms of glaucomatous optic neuropathy and aid the development of neuroprotective therapies.

Journal

Annual review of vision scienceAnnual Reviews

Published: Sep 15, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off