Interface Kinetics, Grain-Scale Deformation, and Polymorphism

Interface Kinetics, Grain-Scale Deformation, and Polymorphism Deviatoric stress generated within subducting slabs by the olivinespinel transformation has been modeled by assuming the phases to be simply connected rather than comprising a mixture in which one phase is embedded within another. Here, we use a simplified model to explain how transformation strain is incorporated into a continuum model, and we then use the simplified model to explain quantitatively the origin of the unreasonably large deviatoric stresses predicted by existing slab models. We review experiments on the transformation of single-crystal samples and argue that they are consistent with the occurrence, at the grain scale, of deviatoric stresses comparable with those predicted (erroneously) to exist at the slab scale by those slab models. Using a simple example, we show that although large deviatoric stresses can exist at the grain scale, their average over a sample containing many grains can be hydrostatic. This leads us to the problem of modeling the microscale structure. We outline the thermodynamics needed for such nonhydrostatic systems, and we illustrate their use and implications with examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Earth and Planetary Sciences Annual Reviews

Interface Kinetics, Grain-Scale Deformation, and Polymorphism

Loading next page...
 
/lp/annual_reviews/interface-kinetics-grain-scale-deformation-and-polymorphism-Ijr0Uex5mM
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0084-6597
eISSN
1545-4495
D.O.I.
10.1146/annurev-earth-040610-133511
Publisher site
See Article on Publisher Site

Abstract

Deviatoric stress generated within subducting slabs by the olivinespinel transformation has been modeled by assuming the phases to be simply connected rather than comprising a mixture in which one phase is embedded within another. Here, we use a simplified model to explain how transformation strain is incorporated into a continuum model, and we then use the simplified model to explain quantitatively the origin of the unreasonably large deviatoric stresses predicted by existing slab models. We review experiments on the transformation of single-crystal samples and argue that they are consistent with the occurrence, at the grain scale, of deviatoric stresses comparable with those predicted (erroneously) to exist at the slab scale by those slab models. Using a simple example, we show that although large deviatoric stresses can exist at the grain scale, their average over a sample containing many grains can be hydrostatic. This leads us to the problem of modeling the microscale structure. We outline the thermodynamics needed for such nonhydrostatic systems, and we illustrate their use and implications with examples.

Journal

Annual Review of Earth and Planetary SciencesAnnual Reviews

Published: Aug 30, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off