Inhibitory Interneurons in the Retina: Types, Circuitry, and Function

Inhibitory Interneurons in the Retina: Types, Circuitry, and Function Visual signals in the vertebrate retina are shaped by feedback and feedforward inhibition in two synaptic layers. In one, horizontal cells establish fundamental center-surround receptive-field properties via morphologically and physiologically complex synapses with photoreceptors and bipolar cells. In the other, a panoply of amacrine cells imbue ganglion cell responses with spatiotemporally complex information about the visual world. Here, I review current ideas about horizontal cell signaling, considering the evidence for and against the leading, competing theories. I also discuss recent work that has begun to make sense of the remarkable morphological and physiological diversity of amacrine cells. These latter efforts have been aided tremendously by increasingly complete connectivity maps of inner retinal circuitry and new genetic tools that enable study of individual, sparsely expressed amacrine cell types. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual review of vision science Annual Reviews

Inhibitory Interneurons in the Retina: Types, Circuitry, and Function

Loading next page...
 
/lp/annual_reviews/inhibitory-interneurons-in-the-retina-types-circuitry-and-function-w84CeroF0N
Publisher
Annual Reviews
ISSN
2374-4642
eISSN
2374-4650
D.O.I.
10.1146/annurev-vision-102016-061345
Publisher site
See Article on Publisher Site

Abstract

Visual signals in the vertebrate retina are shaped by feedback and feedforward inhibition in two synaptic layers. In one, horizontal cells establish fundamental center-surround receptive-field properties via morphologically and physiologically complex synapses with photoreceptors and bipolar cells. In the other, a panoply of amacrine cells imbue ganglion cell responses with spatiotemporally complex information about the visual world. Here, I review current ideas about horizontal cell signaling, considering the evidence for and against the leading, competing theories. I also discuss recent work that has begun to make sense of the remarkable morphological and physiological diversity of amacrine cells. These latter efforts have been aided tremendously by increasingly complete connectivity maps of inner retinal circuitry and new genetic tools that enable study of individual, sparsely expressed amacrine cell types.

Journal

Annual review of vision scienceAnnual Reviews

Published: Sep 15, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off