Heusler 4.0: Tunable Materials

Heusler 4.0: Tunable Materials Heusler compounds are a large family of binary, ternary, and quaternary compounds that exhibit a wide range of properties of both fundamental and potential technological interest. The extensive tunability of the Heusler compounds through chemical substitutions and structural motifs makes the family especially interesting. In this article we highlight recent major developments in the field of Heusler compounds and put these in the historical context. The evolution of the Heusler compounds can be described by four major periods of research. In the latest period, Heusler 4.0 has led to the observation of a variety of properties derived from topology that includes topological metals with Weyl and Dirac points; a variety of noncollinear spin textures, including the very recent observation of skyrmions at room temperature; and giant anomalous Hall effects in antiferromagnetic Heuslers with triangular magnetic structures. Here we give a comprehensive overview of these major achievements and set research into Heusler materials within the context of recent emerging trends in condensed matter physics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Materials Research Annual Reviews

Loading next page...
 
/lp/annual_reviews/heusler-4-0-tunable-materials-yD7hXacE00
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
1531-7331
eISSN
1545-4118
D.O.I.
10.1146/annurev-matsci-070616-123928
Publisher site
See Article on Publisher Site

Abstract

Heusler compounds are a large family of binary, ternary, and quaternary compounds that exhibit a wide range of properties of both fundamental and potential technological interest. The extensive tunability of the Heusler compounds through chemical substitutions and structural motifs makes the family especially interesting. In this article we highlight recent major developments in the field of Heusler compounds and put these in the historical context. The evolution of the Heusler compounds can be described by four major periods of research. In the latest period, Heusler 4.0 has led to the observation of a variety of properties derived from topology that includes topological metals with Weyl and Dirac points; a variety of noncollinear spin textures, including the very recent observation of skyrmions at room temperature; and giant anomalous Hall effects in antiferromagnetic Heuslers with triangular magnetic structures. Here we give a comprehensive overview of these major achievements and set research into Heusler materials within the context of recent emerging trends in condensed matter physics.

Journal

Annual Review of Materials ResearchAnnual Reviews

Published: Jul 3, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off