Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Wurtzel, R. Sapra, Feng Chen, Yiwen Zhu, B. Simmons, R. Sorek (2010)
A single-base resolution map of an archaeal transcriptome.Genome research, 20 1
A. Kazantsev, N. Pace (2006)
Bacterial RNase P: a new view of an ancient enzymeNature Reviews Microbiology, 4
J. Kadonaga (2012)
Perspectives on the RNA polymerase II core promoterWiley Interdisciplinary Reviews: Developmental Biology, 1
M. Yakunina, T. Artamonova, S. Borukhov, K. Makarova, K. Severinov, L. Minakhin (2015)
A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophageNucleic Acids Research, 43
C. Brochier-Armanet, S. Gribaldo, P. Forterre (2008)
A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and EucaryaBiology Direct, 3
T. Fouqueau, M. Zeller, A. Cheung, P. Cramer, M. Thomm (2013)
The RNA polymerase trigger loop functions in all three phases of the transcription cycleNucleic Acids Research, 41
F. Blombach, K. Makarova, J. Marrero, B. Siebers, E. Koonin, J. Oost (2009)
Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in ArchaeaBiology Direct, 4
J. Babski, Karina Haas, Daniela Näther-Schindler, F. Pfeiffer, Konrad Förstner, M. Hammelmann, R. Hilker, A. Becker, C. Sharma, A. Marchfelder, J. Soppa (2016)
Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)BMC Genomics, 17
F. Blombach, E. Salvadori, T. Fouqueau, Jun Yan, Julia Reimann, C. Sheppard, Katherine Smollett, S. Albers, C. Kay, K. Thalassinos, F. Werner (2015)
Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39eLife, 4
K. Severinov, R. Mooney, S. Darst, R. Landick (1997)
Tethering of the Large Subunits of Escherichia coli RNA Polymerase*The Journal of Biological Chemistry, 272
Isabelle Brun, A. Sentenac, M. Werner (1997)
Dual role of the C34 subunit of RNA polymerase III in transcription initiationThe EMBO Journal, 16
B. Bae, A. Feklistov, Agnieszka Lass-Napiorkowska, R. Landick, S. Darst (2015)
Author response: Structure of a bacterial RNA polymerase holoenzyme open promoter complexeLife
L. Aravind, Vivek Anantharaman, S. Balaji, M. Babu, L. Iyer (2005)
The many faces of the helix-turn-helix domain: transcription regulation and beyond.FEMS microbiology reviews, 29 2
C. Arraiano, José Andrade, S. Domingues, I. Guinote, M. Malecki, R. Matos, R. Moreira, V. Pobre, Filipa Reis, M. Saramago, I. Silva, S. Viegas (2010)
The critical role of RNA processing and degradation in the control of gene expression.FEMS microbiology reviews, 34 5
S. Sasse-Dwight, J. Gralla (1989)
KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo.The Journal of biological chemistry, 264 14
D. Forget, M. Langelier, C. Thérien, V. Trinh, B. Coulombe (2004)
Photo-Cross-Linking of a Purified Preinitiation Complex Reveals Central Roles for the RNA Polymerase II Mobile Clamp and TFIIE in Initiation MechanismsMolecular and Cellular Biology, 24
Y. Zuo, T. Steitz (2015)
Crystal structures of the E. coli transcription initiation complexes with a complete bubble.Molecular cell, 58 3
Stacey Wagner, Petro Yakovchuk, Benjamin Gilman, Steven Ponicsan, L. Drullinger, Jennifer Kugel, J. Goodrich (2013)
RNA polymerase II acts as an RNA‐dependent RNA polymerase to extend and destabilize a non‐coding RNAThe EMBO Journal, 32
T. Heyduk, E. Heyduk, K. Severinov, H. Tang, R. Ebright (1996)
Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.Proceedings of the National Academy of Sciences of the United States of America, 93 19
W. Lane, S. Darst (2010)
Molecular evolution of multisubunit RNA polymerases: sequence analysis.Journal of molecular biology, 395 4
Y. Nedialkov, K. Opron, Fadi Assaf, I. Artsimovitch, M. Kireeva, M. Kashlev, R. Cukier, E. Nudler, Z. Burton (2013)
The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.Biochimica et biophysica acta, 1829 2
F. Werner, Dina Grohmann (2011)
Evolution of multisubunit RNA polymerases in the three domains of lifeNature Reviews Microbiology, 9
Craig Kaplan, K. Larsson, R. Kornberg (2008)
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.Molecular cell, 30 5
A. Hirata, B. Klein, K. Murakami (2008)
The X-ray crystal structure of RNA polymerase from ArchaeaNature, 451
Yuan He, Chunli Yan, Jie Fang, C. Inouye, R. Tjian, I. Ivanov, E. Nogales (2016)
Near-atomic resolution visualization of human transcription promoter openingNature, 533
Amy Cavanagh, K. Wassarman (2014)
6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond.Annual review of microbiology, 68
B. Moss, B. Ahn, B. Amegadzie, P. Gershon, J. Keck (1991)
Cytoplasmic transcription system encoded by vaccinia virus.The Journal of biological chemistry, 266 3
Yulia Yuzenkova, A. Bochkareva, V. Tadigotla, Mohammad Roghanian, S. Zorov, K. Severinov, N. Zenkin (2010)
Stepwise mechanism for transcription fidelityBMC Biology, 8
M. Gleghorn, E. Davydova, R. Basu, L. Rothman-Denes, K. Murakami (2011)
X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotidesProceedings of the National Academy of Sciences, 108
Julia Nagy, Dina Grohmann, A. Cheung, Sarah Schulz, Katherine Smollett, F. Werner, J. Michaelis (2015)
Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPSNature Communications, 6
L. Iyer, S. Balaji, E. Koonin, L. Aravind, La Scola (2006)
Evolutionary genomics of nucleo-cytoplasmic large DNA viruses.Virus research, 117 1
S. Nakagawa, Y. Niimura, K. Miura, T. Gojobori (2010)
Dynamic evolution of translation initiation mechanisms in prokaryotesProceedings of the National Academy of Sciences, 107
B. Liu, T. Steitz (2016)
Structural insights into NusG regulating transcription elongationNucleic Acids Research, 45
(2010)
Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases
Souad Naji, Sebastian Grünberg, M. Thomm (2007)
The RPB7 Orthologue E′ Is Required for Transcriptional Activity of a Reconstituted Archaeal Core Enzyme at Low Temperatures and Stimulates Open Complex Formation*Journal of Biological Chemistry, 282
G. Storz, J. Vogel, K. Wassarman (2011)
Regulation by small RNAs in bacteria: expanding frontiers.Molecular cell, 43 6
F. Werner (2012)
A Nexus for Gene Expression—Molecular Mechanisms of Spt5 and NusG in the Three Domains of LifeJournal of Molecular Biology, 417
N. Yutin, Y. Wolf, E. Koonin (2014)
Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life.Virology, 466-467
W. Lane, S. Darst (2010)
Molecular evolution of multisubunit RNA polymerases: structural analysis.Journal of molecular biology, 395 4
F. Blombach, Katherine Smollett, Dina Grohmann, F. Werner (2016)
Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation.Journal of molecular biology, 428 12
V. Sosunov, S. Zorov, Ekaterina Sosunova, A. Nikolaev, I. Zakeyeva, I. Bass, A. Goldfarb, V. Nikiforov, K. Severinov, A. Mustaev (2005)
The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymeraseNucleic Acids Research, 33
Donghyuk Kim, J. Hong, Yu Qiu, Harish Nagarajan, Joo-Hyun Seo, Byung-Kwan Cho, S. Tsai, B. Palsson (2012)
Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site ProfilingPLoS Genetics, 8
Yulong Shen, K. Musti, Madoka Hiramoto, H. Kikuchi, Y. Kawarabayashi, I. Matsui (2001)
Invariant Asp-1122 and Asp-1124 Are Essential Residues for Polymerization Catalysis of Family D DNA Polymerase fromPyrococcus horikoshii *The Journal of Biological Chemistry, 276
D. Vassylyev, S. Sekine, O. Laptenko, JooKyung Lee, M. Vassylyeva, S. Borukhov, S. Yokoyama (2002)
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolutionNature, 417
P. Salgado, M. Koivunen, E. Makeyev, D. Bamford, D. Stuart, J. Grimes (2006)
The Structure of an RNAi Polymerase Links RNA Silencing and TranscriptionPLoS Biology, 4
C. Tous, M. Vega-Palas, A. Vioque (2001)
Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs. Insight in the in vivo maturation pathway of transfer and other stable RNAs.The Journal of biological chemistry, 276 31
K. Severinov, A. Mustaev, A. Kukarin, Oriana Muzzin, I. Bass, S. Darst, A. Goldfarb (1996)
Structural Modules of the Large Subunits of RNA PolymeraseThe Journal of Biological Chemistry, 271
D. Kostrewa, M. Zeller, K. Armache, M. Seizl, K. Leike, M. Thomm, P. Cramer (2009)
RNA polymerase II–TFIIB structure and mechanism of transcription initiationNature, 462
Teresa Cortes, Olga Schubert, G. Rose, K. Arnvig, I. Comas, R. Aebersold, D. Young (2013)
Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosisCell Reports, 5
I. Artsimovitch, M. Vassylyeva, D. Svetlov, V. Svetlov, A. Perederina, N. Igarashi, N. Matsugaki, S. Wakatsuki, T. Tahirov, D. Vassylyev (2005)
Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by RifamycinsCell, 122
Lennart Randau, I. Schröder, D. Söll (2008)
Life without RNase PNature, 453
Samuel Burton, Z. Burton (2014)
The σ enigma: Bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologsTranscription, 5
Christian Rinke, P. Schwientek, A. Sczyrba, Natalia Ivanova, I. Anderson, Jan-Fang Cheng, A. Darling, S. Malfatti, B. Swan, E. Gies, J. Dodsworth, B. Hedlund, G. Tsiamis, S. Sievert, Wen-Tso Liu, J. Eisen, S. Hallam, N. Kyrpides, R. Stepanauskas, E. Rubin, P. Hugenholtz, T. Woyke (2013)
Insights into the phylogeny and coding potential of microbial dark matterNature, 499
W. Xie, Karin Jager, M. Potts (1989)
Cyanobacterial RNA polymerase genes rpoC1 and rpoC2 correspond to rpoC of Escherichia coliJournal of Bacteriology, 171
L. Iyer, E. Koonin, L. Aravind (2004)
Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer.Gene, 335
L. Minakhin, Sechal Bhagat, Adrian Brunning, E. Campbell, S. Darst, R. Ebright, K. Severinov (2001)
Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly.Proceedings of the National Academy of Sciences of the United States of America, 98 3
B. Brindefalk, Benoit Dessailly, C. Yeats, C. Orengo, F. Werner, A. Poole (2013)
Evolutionary history of the TBP-domain superfamilyNucleic Acids Research, 41
J. Parvin, P. Sharp (1993)
DNA topology and a minimal set of basal factors for transcription by RNA polymerase IICell, 73
Lin Tan, Simone Wiesler, D. Trzaska, Hannah Carney, R. Weinzierl (2008)
Bridge helix and trigger loop perturbations generate superactive RNA polymerasesJournal of Biology, 7
G. Pühler, H. Leffers, F. Gropp, P. Palm, H. Klenk, F. Lottspeich, R. Garrett, W. Zillig (1989)
Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome.Proceedings of the National Academy of Sciences of the United States of America, 86 12
E. Lehmann, F. Brueckner, P. Cramer (2007)
Molecular basis of RNA-dependent RNA polymerase II activityNature, 450
Sonja Grill, C. Gualerzi, P. Londei, U. Bläsi (2000)
Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translationThe EMBO Journal, 19
Stephen Bell, Christine Jaxel, Marc Nadal, Peter Kosa, Stephen Jackson (1998)
Temperature, template topology, and factor requirements of archaeal transcription.Proceedings of the National Academy of Sciences of the United States of America, 95 26
Matthew Larson, R. Mooney, J. Peters, Tricia Windgassen, D. Nayak, C. Gross, S. Block, W. Greenleaf, R. Landick, J. Weissman (2014)
A pause sequence enriched at translation start sites drives transcription dynamics in vivoScience, 344
Bruce Knutson, S. Broyles (2008)
Expansion of poxvirus RNA polymerase subunits sharing homology with corresponding subunits of RNA polymerase IIVirus Genes, 36
Daniel Brown, G. Barton, Zhensheng Pan, M. Buck, S. Wigneshweraraj (2014)
Nitrogen stress response and stringent response are coupled in Escherichia coliNature Communications, 5
P. Cramer (2002)
Common structural features of nucleic acid polymerases.BioEssays : news and reviews in molecular, cellular and developmental biology, 24 8
Yun Yang, V. Darbari, Nan Zhang, Duo Lu, R. Glyde, Yi-Ping Wang, Jared Winkelman, R. Gourse, K. Murakami, M. Buck, Xiaodong Zhang (2015)
Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategiesScience, 349
J. Ko, Kook Han, Yool Kim, S. Sim, Kwang-sun Kim, Sang-Joon Lee, B. Cho, Kang-in Lee, Younghoon Lee (2008)
Dual function of RNase E for control of M1 RNA biosynthesis in Escherichia coli.Biochemistry, 47 2
L. Guarino, Bin Xu, Jianping Jin, W. Dong (1998)
A Virus-Encoded RNA Polymerase Purified from Baculovirus-Infected CellsJournal of Virology, 72
Javier Rodríguez, M. Salas (2013)
African swine fever virus transcription.Virus research, 173 1
F. Werner (2007)
Structure and function of archaeal RNA polymerasesMolecular Microbiology, 65
P. Cramer, D. Bushnell, R. Kornberg (2001)
Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom ResolutionScience, 292
H. Rackwitz, W. Rohde, H. Sänger (1981)
DNA-dependent RNA polymerase II of plant origin transcribes viroid RNA into full-length copiesNature, 291
Jinwei Zhang, M. Palangat, R. Landick (2010)
Role of the RNA polymerase trigger loop in catalysis and pausingNature Structural &Molecular Biology, 17
F. Werner, R. Weinzierl (2005)
Direct Modulation of RNA Polymerase Core Functions by Basal Transcription FactorsMolecular and Cellular Biology, 25
S. Qureshi, S. Bell, S. Jackson (1997)
Factor requirements for transcription in the Archaeon Sulfolobus shibataeThe EMBO Journal, 16
K. Peck-Miller, S. Altman (1991)
Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli.Journal of molecular biology, 221 1
Vikas Sharma, P. Colson, R. Giorgi, P. Pontarotti, D. Raoult (2014)
DNA-Dependent RNA Polymerase Detects Hidden Giant Viruses in Published DatabanksGenome Biology and Evolution, 6
C. Plaschka, M. Hantsche, C. Dienemann, C. Burzinski, J. Plitzko, P. Cramer (2016)
Transcription initiation complex structures elucidate DNA openingNature, 533
Kwang-sun Kim, Younghoon Lee (2004)
Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases.Nucleic acids research, 32 20
A. Bolotin, P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. Ehrlich, A. Sorokin (2001)
The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403.Genome research, 11 5
Anastasiya Sevostyanova, V. Svetlov, D. Vassylyev, I. Artsimovitch (2008)
The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complexProceedings of the National Academy of Sciences, 105
F. Blombach, T. Daviter, D. Fielden, Dina Grohmann, Katherine Smollett, F. Werner (2013)
Archaeology of RNA polymerase: factor swapping during the transcription cycle.Biochemical Society transactions, 41 1
W. Hausner, Jörn Wettach, C. Hethke, M. Thomm (1996)
Two Transcription Factors Related with the Eucaryal Transcription Factors TATA-binding Protein and Transcription Factor IIB Direct Promoter Recognition by an Archaeal RNA Polymerase*The Journal of Biological Chemistry, 271
Dario Benelli, P. Londei (2009)
Begin at the beginning: evolution of translational initiation.Research in microbiology, 160 7
Y. Komine, M. Kitabatake, T. Yokogawa, K. Nishikawa, H. Inokuchi (1994)
A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America, 91 20
L. Sauguet, P. Raia, G. Henneke, M. Delarue (2016)
Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallographyNature Communications, 0
Dina Grohmann, Julia Nagy, Anirban Chakraborty, D. Klose, D. Fielden, R. Ebright, J. Michaelis, F. Werner (2011)
The Initiation Factor TFE and the Elongation Factor Spt4/5 Compete for the RNAP Clamp during Transcription Initiation and ElongationMolecular Cell, 43
Xiaobin Zheng, Gang-Qing Hu, Z. She, Huaiqiu Zhu (2011)
Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotesBMC Genomics, 12
R. Basu, B. Warner, V. Molodtsov, D. Pupov, D. Esyunina, C. Fernández‐Tornero, A. Kulbachinskiy, K. Murakami (2014)
Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme*The Journal of Biological Chemistry, 289
L. Iyer, L. Aravind (2012)
Insights from the architecture of the bacterial transcription apparatus.Journal of structural biology, 179 3
C. Qiu, Olivia Erinne, J. Dave, P. Cui, Huiyan Jin, Nandhini Muthukrishnan, L. Tang, S. Babu, Kenny Lam, Paul Vandeventer, Ralf Strohner, J. Brulle, S. Sze, Craig Kaplan (2016)
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger LoopPLoS Genetics, 12
S. Sainsbury, J. Niesser, P. Cramer (2012)
Structure and function of the initially transcribing RNA polymerase II–TFIIB complexNature, 493
M. Kireeva, Y. Nedialkov, G. Cremona, Y. Purtov, L. Lubkowska, F. Malagón, Z. Burton, J. Strathern, M. Kashlev (2008)
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.Molecular cell, 30 5
J. Kuznar, M. Salas, E. Viñuela (1980)
DNA-dependent RNA polymerase in African swine fever virus.Virology, 101 1
T. Udagawa, Y. Shimizu, T. Ueda (2004)
Evidence for the Translation Initiation of Leaderless mRNAs by the Intact 70 S Ribosome without Its Dissociation into Subunits in Eubacteria*Journal of Biological Chemistry, 279
Frank RHolstege, Dean Tantin, Michael Carey, P. Viiet, H. Timmers (1995)
The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA.The EMBO Journal, 14
N. Yutin, P. Colson, D. Raoult, E. Koonin (2013)
Mimiviridae: clusters of orthologous genes, reconstruction of gene repertoire evolution and proposed expansion of the giant virus familyVirology Journal, 10
I. Vvedenskaya, Yuanchao Zhang, Seth Goldman, Anna Valenti, V. Visone, Deanne Taylor, R. Ebright, Bryce Nickels (2015)
Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.Molecular cell, 60 6
L. Iyer, E. Koonin, L. Aravind (2003)
Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerasesBMC Structural Biology, 3
W. Johnston, P. Unrau, M. Lawrence, M. Glasner, D. Bartel (2001)
RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer ExtensionScience, 292
Evolution-related multisubunit RNA polymerases (RNAPs) carry out RNA synthesis in all domains life. Although their catalytic cores and fundamental mechanisms of transcription elongation are conserved, the initiation stage of the transcription cycle differs substantially in bacteria, archaea, and eukaryotes in terms of the requirements for accessory factors and details of the molecular mechanisms. This review focuses on recent insights into the evolution of the transcription apparatus with regard to (a) the surprisingly pervasive double- -barrel active-site configuration among different nucleic acid polymerase families, (b) the origin and phylogenetic distribution of TBP, TFB, and TFE transcription factors, and (c) the functional relationship between transcription and translation initiation mechanisms in terms of transcription start site selection and RNA structure.
Annual Review of Microbiology – Annual Reviews
Published: Sep 8, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.