Evolution of Mating in the Saccharomycotina

Evolution of Mating in the Saccharomycotina The fungal phylum Ascomycota comprises three subphyla: Saccharomycotina, Pezizomycotina, and Taphrinomycotina. In many Saccharomycotina species, cell identity is determined by genes at the MAT (mating-type) locus; mating occurs between MATa and MAT cells. Some species can switch between MATa and MAT mating types. Switching in the Saccharomycotina originated in the common ancestor of the Saccharomycetaceae, Pichiaceae, and Metschnikowiaceae families, as a flipflop mechanism that inverted a section of chromosome. Switching was subsequently lost in the Metschnikowiaceae, including Candida albicans, but became more complex in the Saccharomycetaceae when the mechanism changed from inversion to copy-and-paste between HMLHMR and MAT. Based on their phylogenetic closeness and the similarity of their MTL (mating-type like) loci, some Metschnikowia species may provide useful models for the sexual cycles of Candida species. Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus (MATMTL) has controlled cell type throughout ascomycete evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Microbiology Annual Reviews

Evolution of Mating in the Saccharomycotina

Loading next page...
 
/lp/annual_reviews/evolution-of-mating-in-the-saccharomycotina-9m5f8UqL0M
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0066-4227
eISSN
1545-3251
D.O.I.
10.1146/annurev-micro-090816-093403
Publisher site
See Article on Publisher Site

Abstract

The fungal phylum Ascomycota comprises three subphyla: Saccharomycotina, Pezizomycotina, and Taphrinomycotina. In many Saccharomycotina species, cell identity is determined by genes at the MAT (mating-type) locus; mating occurs between MATa and MAT cells. Some species can switch between MATa and MAT mating types. Switching in the Saccharomycotina originated in the common ancestor of the Saccharomycetaceae, Pichiaceae, and Metschnikowiaceae families, as a flipflop mechanism that inverted a section of chromosome. Switching was subsequently lost in the Metschnikowiaceae, including Candida albicans, but became more complex in the Saccharomycetaceae when the mechanism changed from inversion to copy-and-paste between HMLHMR and MAT. Based on their phylogenetic closeness and the similarity of their MTL (mating-type like) loci, some Metschnikowia species may provide useful models for the sexual cycles of Candida species. Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus (MATMTL) has controlled cell type throughout ascomycete evolution.

Journal

Annual Review of MicrobiologyAnnual Reviews

Published: Sep 8, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off