Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics

Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical... Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual review of vision science Annual Reviews

Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics

Loading next page...
 
/lp/annual_reviews/electrical-stimulation-of-visual-cortex-relevance-for-the-development-NXZw94ZJgK
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
2374-4642
eISSN
2374-4650
D.O.I.
10.1146/annurev-vision-111815-114525
Publisher site
See Article on Publisher Site

Abstract

Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.

Journal

Annual review of vision scienceAnnual Reviews

Published: Sep 15, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off