Access the full text.
Sign up today, get DeepDyve free for 14 days.
Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker, and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters, one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries and can drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including the degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, which has potential for the fabrication of materials with specific optical and mechanical properties.
Annual Review of Materials Research – Annual Reviews
Published: Jul 3, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.