Aerosol Effects on Climate via Mixed-Phase and Ice Clouds

Aerosol Effects on Climate via Mixed-Phase and Ice Clouds Clouds in Earth's atmosphere can be composed of liquid droplets, ice crystals, or a combination of the two. Clouds thermodynamic phase is largely controlled by temperature, but other factors can also have a significant effect. Aerosolsi.e., particles suspended in Earth's atmosphereaffect cloud properties differently depending on cloud phase and can potentially have a strong influence on climate via any cloud type. Aerosol-cloud-climate interactions have been a topic of active research for more than two decades, but these interactions nevertheless currently represent one of the most uncertain forcings of climate change over the past century. Most research to date has focused on how aerosols can impact climate via liquid clouds, which are better understood and observed than their ice-containing counterparts. Thus, the problem of how liquid clouds mediate aerosols effects on climate is a more tractable one. However, there is no a priori reason to think that mixed-phase and ice clouds are any less affected by changes in atmospheric aerosol composition than liquid clouds, and estimates of how aerosols can influence these ice-containing clouds have started to emerge. Laboratory and field work, as well as satellite observations, is now shifting attention to this new frontier in the field of aerosol-cloud-climate interactions, allowing for improved representation of ice processes in numerical models. Here, we review this recent progress in our understanding of aerosol effects on mixed-phase and ice clouds, focusing on the four underpinning research pillars of laboratory experiments, field observations, satellite retrievals, and numerical modeling of global climate. Evident from this review is the possibility of a powerful yet poorly constrained climate forcing, which is uncertain in terms of both its magnitude and its sign. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Earth and Planetary Sciences Annual Reviews

Aerosol Effects on Climate via Mixed-Phase and Ice Clouds

Loading next page...
 
/lp/annual_reviews/aerosol-effects-on-climate-via-mixed-phase-and-ice-clouds-oEeldlXVmW
Publisher
Annual Reviews
Copyright
Copyright 2017 by Annual Reviews. All rights reserved
ISSN
0084-6597
eISSN
1545-4495
D.O.I.
10.1146/annurev-earth-060115-012240
Publisher site
See Article on Publisher Site

Abstract

Clouds in Earth's atmosphere can be composed of liquid droplets, ice crystals, or a combination of the two. Clouds thermodynamic phase is largely controlled by temperature, but other factors can also have a significant effect. Aerosolsi.e., particles suspended in Earth's atmosphereaffect cloud properties differently depending on cloud phase and can potentially have a strong influence on climate via any cloud type. Aerosol-cloud-climate interactions have been a topic of active research for more than two decades, but these interactions nevertheless currently represent one of the most uncertain forcings of climate change over the past century. Most research to date has focused on how aerosols can impact climate via liquid clouds, which are better understood and observed than their ice-containing counterparts. Thus, the problem of how liquid clouds mediate aerosols effects on climate is a more tractable one. However, there is no a priori reason to think that mixed-phase and ice clouds are any less affected by changes in atmospheric aerosol composition than liquid clouds, and estimates of how aerosols can influence these ice-containing clouds have started to emerge. Laboratory and field work, as well as satellite observations, is now shifting attention to this new frontier in the field of aerosol-cloud-climate interactions, allowing for improved representation of ice processes in numerical models. Here, we review this recent progress in our understanding of aerosol effects on mixed-phase and ice clouds, focusing on the four underpinning research pillars of laboratory experiments, field observations, satellite retrievals, and numerical modeling of global climate. Evident from this review is the possibility of a powerful yet poorly constrained climate forcing, which is uncertain in terms of both its magnitude and its sign.

Journal

Annual Review of Earth and Planetary SciencesAnnual Reviews

Published: Aug 30, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off