Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Opella, F. Marassi, J. Gesell, Ana Valente, Y. Kim, M. Oblatt-Montal, M. Montal (1999)
Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopyNature Structural Biology, 6
S. Chan (2009)
A physical chemist's expedition to explore the world of membrane proteins.Annual review of biophysics, 38
J. Kendrew, G. Bodo, H. Dintzis, R. Parrish, H. Wyckoff, D. Phillips (1958)
A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray AnalysisNature, 181
R. Knox, George Lu, S. Opella, A. Nevzorov (2010)
A resonance assignment method for oriented-sample solid-state NMR of proteins.Journal of the American Chemical Society, 132 24
S. Opella, T. DeSilva, G. Veglia (2002)
Structural biology of metal-binding sequences.Current opinion in chemical biology, 6 2
C. Sanders, F. Sönnichsen (2006)
Solution NMR of membrane proteins: practice and challengesMagnetic Resonance in Chemistry, 44
J. Klein-Seetharaman, N. Yanamala, Fathima Javeed, P. Reeves, E. Getmanova, M. Loewen, H. Schwalbe, H. Khorana (2004)
Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.Proceedings of the National Academy of Sciences of the United States of America, 101 10
Randal Ketchem, W. Hu, T. Cross (1993)
High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR.Science, 261 5127
S. Singer, G. Nicolson (1972)
The Fluid Mosaic Model of the Structure of Cell MembranesScience, 175
F. Almeida, S. Opella (1997)
fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix.Journal of molecular biology, 270 3
F. Marassi (2001)
A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy.Biophysical journal, 80 2
Timothy Cross, S. Opella (1980)
Structural properties of fd coat protein in sodium dodecyl sulfate micelles.Biochemical and biophysical research communications, 92 2
S. Reckel, Daniel Gottstein, Jochen Stehle, F. Löhr, Mirka-Kristin Verhoefen, M. Takeda, R. Silvers, M. Kainosho, C. Glaubitz, J. Wachtveitl, F. Bernhard, H. Schwalbe, P. Güntert, V. Dötsch (2011)
Solution NMR structure of proteorhodopsin.Angewandte Chemie, 50 50
B. Lewis, G. Harbison, J. Herzfeld, R. Griffin (1985)
NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion.Biochemistry, 24 17
W. Son, S. Park, Henry Nothnagel, George Lu, Yan Wang, Hua Zhang, G. Cook, Stanley Howell, S. Opella (2012)
'q-Titration' of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy.Journal of magnetic resonance, 214 1
S. Park, B. Das, A. Angelis, M. Scrima, S. Opella (2010)
Mechanically, magnetically, and "rotationally aligned" membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination.The journal of physical chemistry. B, 114 44
R. Page, Jacob Moore, Hau Nguyen, Mukesh Sharma, Rose Chase, F. Gao, Charles Mobley, C. Sanders, Liping Ma, F. Sönnichsen, Sangwon Lee, Stanley Howell, S. Opella, T. Cross (2006)
Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteinsJournal of Structural and Functional Genomics, 7
S. Park, S. Opella (2010)
Triton X-100 as the "short-chain lipid" improves the magnetic alignment and stability of membrane proteins in phosphatidylcholine bilayers for oriented-sample solid-state NMR spectroscopy.Journal of the American Chemical Society, 132 36
R. Mahalakshmi, F. Marassi (2008)
Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-State NMR.Biochemistry, 47 25
R. Tycko, P. Stewart, S. Opella (1986)
Peptide plane orientations determined by fundamental and overtone 14N NMRJournal of the American Chemical Society, 108
Anna Diller, Cécile Loudet, Fabien Aussenac, G. Raffard, Sylvie Fournier, M. Laguerre, A. Grélard, S. Opella, F. Marassi, E. Dufourc (2009)
Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes.Biochimie, 91 6
R. Cherry (1975)
Protein mobility in membranesFEBS Letters, 55
N. Bloembergen, E. Purcell, R. Pound (1948)
Relaxation Effects in Nuclear Magnetic Resonance Absorption
F. Marassi, S. Opella (2000)
A solid-state NMR index of helical membrane protein structure and topology.Journal of magnetic resonance, 144 1
J. Quine, T. Cross (1983)
Protein Structure from Solid-State NMR
H. Michel (1982)
Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis.Journal of molecular biology, 158 3
D. Waugh, Catherine Wilson (2008)
The Interleukin-8 Pathway in CancerClinical Cancer Research, 14
J. Chou, J. Kaufman, S. Stahl, P. Wingfield, A. Bax (2002)
Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel.Journal of the American Chemical Society, 124 11
J. Klein-Seetharaman, P. Reeves, M. Loewen, E. Getmanova, J. Chung, H. Schwalbe, P. Wright, H. Khorana (2002)
Solution NMR spectroscopy of [α-15N]lysine-labeled rhodopsin: The single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequenceProceedings of the National Academy of Sciences of the United States of America, 99
Charles Sanders, R Prosser (1998)
Bicelles: a model membrane system for all seasons?Structure, 6 10
G. Veglia, S. Opella (2000)
Lanthanide Ion Binding to Adventitious Sites Aligns Membrane Proteins in Micelles for Solution NMR SpectroscopyJournal of the American Chemical Society, 122
P. Shealy, Mikhail Simin, S. Park, S. Opella, H. Valafar (2010)
Simultaneous structure and dynamics of a membrane protein using REDCRAFT: membrane-bound form of Pf1 coat protein.Journal of magnetic resonance, 207 1
S. Opella, M. Frey, T. Cross (1979)
Detection of individual carbon resonances in solid proteinsJournal of the American Chemical Society, 101
O. Zerbe (2012)
First solution structures of seven-transmembrane helical proteins.Angewandte Chemie, 51 4
Hartmut Michel, Dieter Oesterhelt (1980)
Three-dimensional crystals of membrane proteins: bacteriorhodopsin.Proceedings of the National Academy of Sciences of the United States of America, 77 3
F. Marassi, B. Das, George Lu, Henry Nothnagel, S. Park, W. Son, Ye Tian, S. Opella (2011)
Structure determination of membrane proteins in five easy pieces.Methods, 55 4
C. Tanford, J. Reynolds (1976)
Characterization of membrane proteins in detergent solutions.Biochimica et biophysica acta, 457 2
M. Poo, R. Cone (1974)
Lateral diffusion of rhodopsin in the photoreceptor membraneNature, 247
C. Anfinsen (1973)
Principles that govern the folding of protein chains.Science, 181 4096
Yang Shen, F. Delaglio, Gabriel Cornilescu, A. Bax (2009)
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shiftsJournal of Biomolecular NMR, 44
L. Rajagopalan, K. Rajarathnam (2004)
Ligand Selectivity and Affinity of Chemokine Receptor CXCR1Journal of Biological Chemistry, 279
M. Edidin (1974)
Rotational and translational diffusion in membranes.Annual review of biophysics and bioengineering, 3 0
S. Rajagopal, K. Rajagopal, R. Lefkowitz (2010)
Teaching old receptors new tricks: biasing seven-transmembrane receptorsNature Reviews Drug Discovery, 9
K. Palczewski, T. Kumasaka, T. Hori, C. Behnke, H. Motoshima, B. Fox, I. Trong, D. Teller, T. Okada, R. Stenkamp, Masaki Yamamoto, M. Miyano (2000)
Crystal structure of rhodopsin: A G protein-coupled receptor.Science, 289 5480
A. Angelis, S. Opella (2007)
Bicelle samples for solid-state NMR of membrane proteinsNature Protocols, 2
D. Rosenbaum, V. Cherezov, M. Hanson, S. Rasmussen, Foon Thian, T. Kobilka, Hee-Jung Choi, X. Yao, W. Weis, R. Stevens, B. Kobilka (2007)
GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor FunctionScience, 318
S. Miller (1953)
A production of amino acids under possible primitive earth conditions.Science, 117 3046
M. Mesleh, G. Veglia, T. DeSilva, F. Marassi, S. Opella (2002)
Dipolar waves as NMR maps of protein structure.Journal of the American Chemical Society, 124 16
H. Mcconnell, W. Hubbell (1971)
Molecular motion in spin-labeled phospholipids and membranes.Journal of the American Chemical Society, 93 2
S. Park, B. Das, F. Casagrande, Ye Tian, Henry Nothnagel, Mignon Chu, H. Kiefer, Klaus Maier, A. Angelis, F. Marassi, S. Opella (2012)
Structure of the Chemokine Receptor CXCR1 in Phospholipid BilayersNature, 491
Yang Shen, O. Lange, F. Delaglio, P. Rossi, J. Aramini, Gaohua Liu, A. Eletsky, Yibing Wu, K. Singarapu, A. Lemak, A. Ignatchenko, C. Arrowsmith, T. Szyperski, G. Montelione, D. Baker, A. Bax (2008)
Consistent blind protein structure generation from NMR chemical shift dataProceedings of the National Academy of Sciences, 105
C. Sanders, J. Myers (2004)
Disease-related misassembly of membrane proteins.Annual review of biophysics and biomolecular structure, 33
J. Chou, S. Gaemers, Bernard Howder, J. Louis, A. Bax (2001)
A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles*Journal of Biomolecular NMR, 21
Jun Hu, R. Fu, T. Cross (2007)
The chemical and dynamical influence of the anti-viral drug amantadine on the M2 proton channel transmembrane domain.Biophysical journal, 93 1
R. Henderson, J. Baldwin, T. Ceska, F. Zemlin, E. Beckmann, K. Downing (1990)
Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.Journal of molecular biology, 213 4
David Tulumello, C. Deber (2012)
Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms.Biochimica et biophysica acta, 1818 5
R. Cone (1972)
Rotational diffusion of rhodopsin in the visual receptor membrane.Nature: New biology, 236 63
A. Nevzorov, S. Opella (2003)
Structural fitting of PISEMA spectra of aligned proteins.Journal of magnetic resonance, 160 1
Timothy Cross, S. Opella (1979)
NMR of fd coat protein.Journal of supramolecular structure, 11 2
A. Gautier, H. Mott, M. Bostock, J. Kirkpatrick, D. Nietlispach (2010)
Structure determination of the seven-helical transmembrane receptor sensory rhodopsin II by solution NMR spectroscopyNature structural & molecular biology, 17
M. Mehring, R. Griffin, J. Waugh (1971)
19F Shielding Tensors from Coherently Narrowed NMR Powder SpectraJournal of Chemical Physics, 55
J. Waugh, L. Huber, U. Haeberlen (1968)
Approach to High-Resolution nmr in SolidsPhysical Review Letters, 20
S. Park, Anthony Mrse, A. Nevzorov, A. Angelis, S. Opella (2006)
Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy.Journal of magnetic resonance, 178 1
S. Opella, J. Waugh (1977)
Two‐dimensional 13C NMR of highly oriented polyethyleneJournal of Chemical Physics, 66
M. Perutz, M. Rossmann, A. Cullis, H. Muirhead, G. Will, A. North (1960)
Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray AnalysisNature, 185
C. Wu, A. Ramamoorthy, L. Gierasch, S. Opella (1995)
Simultaneous Characterization of the Amide 1H Chemical Shift, 1H-15N Dipolar, and 15N Chemical Shift Interaction Tensors in a Peptide Bond by Three-Dimensional Solid-State NMR SpectroscopyJournal of the American Chemical Society, 117
T. Cross, S. Opella (1981)
Hydrogen-1 and carbon-13 nuclear magnetic resonance of the aromatic residues of fd coat protein.Biochemistry, 20 2
S. Opella, P. Stewart (1989)
Solid-state nuclear magnetic resonance structural studies of proteins.Methods in enzymology, 176
F. Sallusto, M. Baggiolini (2008)
Chemokines and leukocyte trafficNature Immunology, 9
V. Yarov-Yarovoy, Jack Schonbrun, D. Baker (2005)
Multipass membrane protein structure prediction using RosettaProteins: Structure, 62
T. Cross, S. Opella (1985)
Protein structure by solid state nuclear magnetic resonance. Residues 40 to 45 of bacteriophage fd coat protein.Journal of molecular biology, 182 3
Qinghai Zhang, Houchao Tao, W. Hong (2011)
New amphiphiles for membrane protein structural biology.Methods, 55 4
V. Cherezov, D. Rosenbaum, M. Hanson, S. Rasmussen, Foon Thian, T. Kobilka, Hee-Jung Choi, P. Kuhn, W. Weis, B. Kobilka, R. Stevens (2007)
High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled ReceptorScience, 318
Y. Smurnyy, S. Opella (2006)
Calculating protein structures directly from anisotropic spin interaction constraintsMagnetic Resonance in Chemistry, 44
J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel (1985)
Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolutionNature, 318
R. Henderson, P. Unwin (1975)
Three-dimensional model of purple membrane obtained by electron microscopyNature, 257
E. Landau, Jürg P. Rosenbusch (1996)
Lipidic cubic phases: a novel concept for the crystallization of membrane proteins.Proceedings of the National Academy of Sciences of the United States of America, 93 25
H. Kim, Stanley Howell, Wade Horn, Y. Jeon, C. Sanders (2009)
Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins.Progress in nuclear magnetic resonance spectroscopy, 55 4
D. Rosenbaum, S. Rasmussen, B. Kobilka (2009)
The structure and function of G-protein-coupled receptorsNature, 459
A. McDermott (2004)
Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward.Current opinion in structural biology, 14 5
A. Krebs, P. Edwards, C. Villa, Jade Li, G. Schertler (2003)
The Three-dimensional Structure of Bovine Rhodopsin Determined by Electron Cryomicroscopy*Journal of Biological Chemistry, 278
C. Ginestier, Suling Liu, Mark Diebel, H. Korkaya, Ming Luo, Marty Brown, Julien Wicinski, O. Cabaud, E. Charafe-Jauffret, D. Birnbaum, J. Guan, G. Dontu, M. Wicha (2010)
CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts.The Journal of clinical investigation, 120 2
J. Prestegard, H. Al‐Hashimi, J. Tolman (2000)
NMR structures of biomolecules using field oriented media and residual dipolar couplingsQuarterly Reviews of Biophysics, 33
J. Soppa (1994)
Two hypotheses ‐ one answerFEBS Letters, 342
Beili Wu, E. Chien, C. Mol, G. Fenalti, Wei Liu, V. Katritch, R. Abagyan, A. Brooun, P. Wells, F. Bi, Damon Hamel, P. Kuhn, T. Handel, V. Cherezov, R. Stevens (2010)
Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide AntagonistsScience, 330
T. DeSilva, G. Veglia, F. Porcelli, A. Prantner, S. Opella (2002)
Selectivity in heavy metal- binding to peptides and proteins.Biopolymers, 64 4
S. Opella, A. Nevzorov, M. Mesleh, F. Marassi (2004)
Structure determination of membrane proteins by NMR spectroscopy.Biochemistry and cell biology = Biochimie et biologie cellulaire, 80 5
J. Tolman, Hashim Al-Hashimi, Lewis Kay, J. Prestegard (2001)
Structural and dynamic analysis of residual dipolar coupling data for proteins.Journal of the American Chemical Society, 123 7
S. Opella, Che Ma, F. Marassi (2001)
Nuclear magnetic resonance of membrane-associated peptides and proteins.Methods in enzymology, 339
Benjamin Wylie, W. Franks, C. Rienstra, C. Rienstra (2006)
Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.The journal of physical chemistry. B, 110 22
J. Schaefer, E. Stejskal (1976)
Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angleJournal of the American Chemical Society, 98
Stanley Howell, M. Mesleh, S. Opella (2005)
NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system.Biochemistry, 44 13
S. Park, F. Casagrande, B. Das, L. Albrecht, Mignon Chu, S. Opella (2011)
Local and global dynamics of the G protein-coupled receptor CXCR1.Biochemistry, 50 12
N. Szeverenyi, M. Sullivan, G. Maciel (1982)
Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinningJournal of Magnetic Resonance, 47
H. Luecke, B. Schobert, H. Richter, Jean-Philippe Cartailler, J. Lanyi (1999)
Structure of bacteriorhodopsin at 1.55 A resolution.Journal of molecular biology, 291 4
T. Cross, J. DiVerdi, S. Opella (1982)
Strategy for nitrogen NMR analysis of biopolymersJournal of the American Chemical Society, 104
O. Vinogradova, F. Sönnichsen, C. Sanders (1998)
On choosing a detergent for solution NMR studies of membrane proteinsJournal of Biomolecular NMR, 11
M. Frey, S. Opella (1984)
Carbon-13 spin exchange in amino acids and peptidesJournal of the American Chemical Society, 106
A. Bax (2003)
Weak alignment offers new NMR opportunities to study protein structure and dynamicsProtein Science, 12
S. Park, Anthony Mrse, A. Nevzorov, M. Mesleh, M. Oblatt-Montal, M. Montal, S. Opella (2003)
Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1.Journal of molecular biology, 333 2
Y. Mou, Peng-Huan Chen, Hsin-Wen Lee, J. Chan (2007)
Determination of chemical shift anisotropies of unresolved carbonyl sites by C-alpha detection under magic-angle spinning.Journal of magnetic resonance, 187 2
Ayyalusamy Ramamoorthy, C. Wu, S. Opella (1995)
Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei.Journal of magnetic resonance. Series B, 107 1
M. Mesleh, Sangwon Lee, G. Veglia, D. Thiriot, F. Marassi, S. Opella (2003)
Dipolar waves map the structure and topology of helices in membrane proteins.Journal of the American Chemical Society, 125 29
F. Marassi, S. Opella (2002)
Using Pisa pies to resolve ambiguities in angular constraints from PISEMA spectra of aligned proteinsJournal of Biomolecular NMR, 23
A. Angelis, Stanley Howell, S. Opella (2006)
Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts.Journal of magnetic resonance, 183 2
D. Nietlispach, A. Gautier (2011)
Solution NMR studies of polytopic α-helical membrane proteins.Current opinion in structural biology, 21 4
A. Gautier, J. Kirkpatrick, D. Nietlispach (2008)
Solution-state NMR spectroscopy of a seven-helix transmembrane protein receptor: backbone assignment, secondary structure, and dynamics.Angewandte Chemie, 47 38
A. Bax, A. Grishaev (2005)
Weak alignment NMR: a hawk-eyed view of biomolecular structure.Current opinion in structural biology, 15 5
C. Schwieters, J. Kuszewski, N. Tjandra, G. Clore (2003)
The Xplor-NIH NMR molecular structure determination package.Journal of magnetic resonance, 160 1
C. Tian, R. Breyer, H. Kim, M. Karra, D. Friedman, and Karpay, C. Sanders (2006)
Solution NMR Spectroscopy of the Human Vasopressin V2 Receptor, A G Protein-Coupled Receptor [J. Am. Chem. Soc. 2005, 127, 8010−8011].Journal of the American Chemical Society, 128
S. Opella, P. Stewart, K. Valentine (1987)
Protein structure by solid-state NMR spectroscopyQuarterly Reviews of Biophysics, 19
C. Sanders, B. Hare, K. Howard, J. Prestegard (1994)
Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated moleculesProgress in Nuclear Magnetic Resonance Spectroscopy, 26
R. Griffin, A. Pines, S. Pausak, J. Waugh (1975)
13C chemical shielding in oxalic acid, oxalic acid dihydrate, and diammonium oxalateJournal of Chemical Physics, 63
V. Katritch, V. Cherezov, R. Stevens (2012)
Diversity and modularity of G protein-coupled receptor structures.Trends in pharmacological sciences, 33 1
V. Ladizhansky, C. Jaroniec, A. Diehl, H. Oschkinat, R. Griffin (2003)
Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy.Journal of the American Chemical Society, 125 22
K. Nishimura, Sanguk Kim, Li Zhang, T. Cross (2002)
The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR.Biochemistry, 41 44
W. Oldham, H. Hamm (2008)
Heterotrimeric G protein activation by G-protein-coupled receptorsNature Reviews Molecular Cell Biology, 9
A. Nevzorov, M. Mesleh, S. Opella (2004)
Structure determination of aligned samples of membrane proteins by NMR spectroscopyMagnetic Resonance in Chemistry, 42
A. Angelis, Stanley Howell, A. Nevzorov, S. Opella (2006)
Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy.Journal of the American Chemical Society, 128 37
Jonathan Lombard, P. López‐García, D. Moreira (2012)
The early evolution of lipid membranes and the three domains of lifeNature Reviews Microbiology, 10
A. Pines, M. Gibby, J. Waugh (1973)
Proton‐enhanced NMR of dilute spins in solidsJournal of Chemical Physics, 59
B. Bechinger, Y. Kim, L. Chirlian, J. Gesell, J. Neumann, M. Montal, John Tomich, Michael Zasloff, S. Opella (1991)
Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopyJournal of Biomolecular NMR, 1
A. Angelis, David Jones, C. Grant, Sang Park, M. Mesleh, S. Opella (2005)
NMR experiments on aligned samples of membrane proteins.Methods in enzymology, 394
Mukesh Sharma, M. Yi, H. Dong, Huajun Qin, E. Peterson, D. Busath, Huan‐Xiang Zhou, T. Cross (2010)
Insight into the Mechanism of the Influenza A Proton Channel from a Structure in a Lipid BilayerScience, 330
M. Schubert, M. Kolbe, B. Kessler, D. Oesterhelt, P. Schmieder (2002)
Heteronuclear Multidimensional NMR Spectroscopy of Solubilized Membrane Proteins: Resonance Assignment of Native BacteriorhodopsinChemBioChem, 3
C. Franzin, P. Teriete, F. Marassi (2007)
Structural similarity of a membrane protein in micelles and membranes.Journal of the American Chemical Society, 129 26
N. Sinha, C. Grant, Chin Wu, A. Angelis, Stanley Howell, S. Opella (2005)
SPINAL modulated decoupling in high field double- and triple-resonance solid-state NMR experiments on stationary samples.Journal of magnetic resonance, 177 2
A. Angelis, A. Nevzorov, S. Park, Stanley Howell, Anthony Mrse, S. Opella (2004)
High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.Journal of the American Chemical Society, 126 47
L. Pauling, R. Corey, H. Branson (1951)
The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain.Proceedings of the National Academy of Sciences of the United States of America, 37 4
N. Sinha, F. Filipp, Lena Jairam, S. Park, Joel Bradley, S. Opella (2007)
Tailoring 13C labeling for triple‐resonance solid‐state NMR experiments on aligned samples of proteinsMagnetic Resonance in Chemistry, 45
S. Park, F. Casagrande, L. Cho, L. Albrecht, S. Opella (2011)
Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy.Journal of molecular biology, 414 2
R. Verardi, Lei Shi, N. Traaseth, N. Walsh, G. Veglia (2011)
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR methodProceedings of the National Academy of Sciences, 108
H. Mao, P. Bell, K. Dunn, R. Chrenko, R. Devries, In, C. Holmes, J. Moriarty, G. Gathers, W. Nellis, J. Appl, N. Yoo, M. Holmes, D. Ross, C. Webb, Pike, S Marsh, A Jephcoat, J. Geophys, S. Bukowinski, T. Uchida, J. Nguyen, W. Caldwell, L. Benedetti, N. Tjandra, A. Bax, A. Bax
0. a Gasketed Mao-bell Type Dac Was Used with Anvils Having 200-m Culets [ Direct Measurement of Distances and Angles in Biomolecules by Nmr in a Dilute Liquid Crystalline Medium
S. Rasmussen, Hee-Jung Choi, D. Rosenbaum, T. Kobilka, Foon Thian, P. Edwards, M. Burghammer, Venkata Ratnala, R. Sanishvili, R. Fischetti, G. Schertler, W. Weis, B. Kobilka (2007)
Crystal structure of the human β2 adrenergic G-protein-coupled receptorNature, 450
F. Marassi, S. Opella (2003)
Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraintsProtein Science, 12
G. Pake (1948)
Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton LineJournal of Chemical Physics, 16
L. Nicholson, F. Moll, T. Mixon, P. Lograsso, J. Lay, T. Cross (1987)
Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'.Biochemistry, 26 21
W. Holmes, James Lee, W. Kuang, G. Rice, W. Wood (1991)
Structure and functional expression of a human interleukin-8 receptor.Science, 253 5025
M. Crump, J. Gong, P. Loetscher, K. Rajarathnam, A. Amara, F. Arenzana‐Seisdedos, J. Virelizier, M. Baggiolini, B. Sykes, I. Clark‐Lewis (1997)
Solution structure and basis for functional activity of stromal cell‐derived factor‐1; dissociation of CXCR4 activation from binding and inhibition of HIV‐1The EMBO Journal, 16
Huan‐Xiang Zhou, T. Cross (2013)
Influences of membrane mimetic environments on membrane protein structures.Annual review of biophysics, 42
Rhiju Das, D. Baker (2008)
Macromolecular modeling with rosetta.Annual review of biochemistry, 77
A. McLaughlin, P. Cullis, M. Hemminga, D. Hoult, G. Radda, G. Ritchie, P. Seeley, R. Richards (1975)
Application of 31P NMR to model and biological membrane systemsFEBS Letters, 57
B. Das, Henry Nothnagel, George Lu, W. Son, Ye Tian, F. Marassi, S. Opella (2012)
Structure determination of a membrane protein in proteoliposomes.Journal of the American Chemical Society, 134 4
Joseph Goncalves, S. Ahuja, S. Erfani, M. Eilers, Steven Smith (2010)
Structure and function of G protein-coupled receptors using NMR spectroscopy.Progress in nuclear magnetic resonance spectroscopy, 57 2
A. Gilman (1987)
G proteins: transducers of receptor-generated signals.Annual review of biochemistry, 56
Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein–coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.
Annual Review of Analytical Chemistry – Annual Reviews
Published: Jun 12, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.