STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules

STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules ▪ Abstract Electron tomography (ET) is uniquely suited to obtain three-dimensional reconstructions of pleomorphic structures, such as cells, organelles or supramolecular assemblies. Although the principles of ET have been known for decades, its use has gathered momentum only in recent years, thanks to technological advances and its combination with improved specimen preparation techniques. The rapid freezing/freeze-substitution preparation is applicable to whole cells and tissues, and it is the method of choice for ET investigations of cellular ultrastructure. The frozen-hydrated preparation provides the best possible structural preservation and allows the imaging of molecules, complexes, and supramolecular assemblies in their native state and their natural environment. Devoid of staining and chemical fixation artifacts, cryo-ET provides a faithful representation of both the surface and internal structure of molecules. In combination with advanced computational methods, such as molecular identification based on pattern recognition techniques, cryo-ET is currently the most promising approach to comprehensively map macromolecular architecture inside cellular tomograms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Biochemistry Annual Reviews

STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules

Loading next page...
 
/lp/annual-reviews/structural-studies-by-electron-tomography-from-cells-to-molecules-x7Ay0V0PlI
Publisher
Annual Reviews
Copyright
Copyright © 2005 by Annual Reviews. All rights reserved
ISSN
0066-4154
eISSN
1545-4509
DOI
10.1146/annurev.biochem.73.011303.074112
Publisher site
See Article on Publisher Site

Abstract

▪ Abstract Electron tomography (ET) is uniquely suited to obtain three-dimensional reconstructions of pleomorphic structures, such as cells, organelles or supramolecular assemblies. Although the principles of ET have been known for decades, its use has gathered momentum only in recent years, thanks to technological advances and its combination with improved specimen preparation techniques. The rapid freezing/freeze-substitution preparation is applicable to whole cells and tissues, and it is the method of choice for ET investigations of cellular ultrastructure. The frozen-hydrated preparation provides the best possible structural preservation and allows the imaging of molecules, complexes, and supramolecular assemblies in their native state and their natural environment. Devoid of staining and chemical fixation artifacts, cryo-ET provides a faithful representation of both the surface and internal structure of molecules. In combination with advanced computational methods, such as molecular identification based on pattern recognition techniques, cryo-ET is currently the most promising approach to comprehensively map macromolecular architecture inside cellular tomograms.

Journal

Annual Review of BiochemistryAnnual Reviews

Published: Jul 7, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off