Roles of Plant Small RNAs in Biotic Stress Responses

Roles of Plant Small RNAs in Biotic Stress Responses A multitude of small RNAs (sRNAs, 18–25 nt in length) accumulate in plant tissues. Although heterogeneous in size, sequence, genomic distribution, biogenesis, and action, most of these molecules mediate repressive gene regulation through RNA silencing. Besides their roles in developmental patterning and maintenance of genome integrity, sRNAs are also integral components of plant responses to adverse environmental conditions, including biotic stress. Until recently, antiviral RNA silencing was considered a paradigm of the interactions linking RNA silencing to pathogens: Virus-derived sRNAs silence viral gene expression and, accordingly, viruses produce suppressor proteins that target the silencing mechanism. However, increasing evidence shows that endogenous, rather than pathogen-derived, sRNAs also have broad functions in regulating plant responses to various microbes. In turn, microbes have evolved ways to inhibit, avoid, or usurp cellular silencing pathways, thereby prompting the deployment of counter-counterdefensive measures by plants, a compelling illustration of the neverending molecular arms race between hosts and parasites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Plant Biology Annual Reviews

Roles of Plant Small RNAs in Biotic Stress Responses

Loading next page...
 
/lp/annual-reviews/roles-of-plant-small-rnas-in-biotic-stress-responses-UJfIJtD1gk
Publisher
Annual Reviews
Copyright
Copyright © 2009 by Annual Reviews. All rights reserved
ISSN
1040-2519
D.O.I.
10.1146/annurev.arplant.043008.092111
Publisher site
See Article on Publisher Site

Abstract

A multitude of small RNAs (sRNAs, 18–25 nt in length) accumulate in plant tissues. Although heterogeneous in size, sequence, genomic distribution, biogenesis, and action, most of these molecules mediate repressive gene regulation through RNA silencing. Besides their roles in developmental patterning and maintenance of genome integrity, sRNAs are also integral components of plant responses to adverse environmental conditions, including biotic stress. Until recently, antiviral RNA silencing was considered a paradigm of the interactions linking RNA silencing to pathogens: Virus-derived sRNAs silence viral gene expression and, accordingly, viruses produce suppressor proteins that target the silencing mechanism. However, increasing evidence shows that endogenous, rather than pathogen-derived, sRNAs also have broad functions in regulating plant responses to various microbes. In turn, microbes have evolved ways to inhibit, avoid, or usurp cellular silencing pathways, thereby prompting the deployment of counter-counterdefensive measures by plants, a compelling illustration of the neverending molecular arms race between hosts and parasites.

Journal

Annual Review of Plant BiologyAnnual Reviews

Published: Jun 2, 2009

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off