REDOX REGULATION OF CELLULAR ACTIVATION

REDOX REGULATION OF CELLULAR ACTIVATION ▪ Abstract Growing evidence has indicated that cellular reduction/oxidation (redox) status regulates various aspects of cellular function. Oxidative stress can elicit positive responses such as cellular proliferation or activation, as well as negative responses such as growth inhibition or cell death. Cellular redox status is maintained by intracellular redox-regulating molecules, including thioredoxin (TRX). TRX is a small multifunctional protein that has a redox-active disulfide/dithiol within the conserved active site sequence: Cys-Gly-Pro-Cys. Adult T cell leukemia–derived factor (ADF), which we originally defined as an IL-2 receptor α-chain/Tac inducer produced by human T cell lymphotrophic virus-I (HTLV-I)–transformed T cells, has been identified as human TRX. TRX/ADF is a stress-inducible protein secreted from cells. TRX/ADF has both intracellular and extracellular functions as one of the key regulators of signaling in the cellular responses against various stresses. Extracellularly, TRX/ADF shows a cytoprotective activity against oxidative stress–induced apoptosis and a growth-promoting effect as an autocrine growth factor. Intracellularly, TRX/ADF is involved in the regulation of protein-protein or protein–nucleic acid interactions through the reduction/oxidation of protein cysteine residues. For example, TRX/ADF translocates from the cytosol into the nucleus by a variety of cellular stresses, to regulate the expression of various genes through the redox factor-1 (Ref-1)/APEX. Further studies to clarify the regulatory roles of TRX/ADF and its target molecules may elucidate the intracellular signaling pathways in the responses against various stresses. The concept of “redox regulation” is emerging as an understanding of the novel mechanisms in the pathogenesis of several disorders, including viral infections, immunodeficiency, malignant transformation, and degenerative disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Immunology Annual Reviews

REDOX REGULATION OF CELLULAR ACTIVATION

Loading next page...
 
/lp/annual-reviews/redox-regulation-of-cellular-activation-fFrJpmlTpl
Publisher
Annual Reviews
Copyright
Copyright © 1997 by Annual Reviews Inc. All rights reserved
Subject
Review Articles
ISSN
0732-0582
eISSN
1545-3278
D.O.I.
10.1146/annurev.immunol.15.1.351
Publisher site
See Article on Publisher Site

Abstract

▪ Abstract Growing evidence has indicated that cellular reduction/oxidation (redox) status regulates various aspects of cellular function. Oxidative stress can elicit positive responses such as cellular proliferation or activation, as well as negative responses such as growth inhibition or cell death. Cellular redox status is maintained by intracellular redox-regulating molecules, including thioredoxin (TRX). TRX is a small multifunctional protein that has a redox-active disulfide/dithiol within the conserved active site sequence: Cys-Gly-Pro-Cys. Adult T cell leukemia–derived factor (ADF), which we originally defined as an IL-2 receptor α-chain/Tac inducer produced by human T cell lymphotrophic virus-I (HTLV-I)–transformed T cells, has been identified as human TRX. TRX/ADF is a stress-inducible protein secreted from cells. TRX/ADF has both intracellular and extracellular functions as one of the key regulators of signaling in the cellular responses against various stresses. Extracellularly, TRX/ADF shows a cytoprotective activity against oxidative stress–induced apoptosis and a growth-promoting effect as an autocrine growth factor. Intracellularly, TRX/ADF is involved in the regulation of protein-protein or protein–nucleic acid interactions through the reduction/oxidation of protein cysteine residues. For example, TRX/ADF translocates from the cytosol into the nucleus by a variety of cellular stresses, to regulate the expression of various genes through the redox factor-1 (Ref-1)/APEX. Further studies to clarify the regulatory roles of TRX/ADF and its target molecules may elucidate the intracellular signaling pathways in the responses against various stresses. The concept of “redox regulation” is emerging as an understanding of the novel mechanisms in the pathogenesis of several disorders, including viral infections, immunodeficiency, malignant transformation, and degenerative disease.

Journal

Annual Review of ImmunologyAnnual Reviews

Published: Apr 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off