Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development

Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development Plant development is characterized by a profound phenotypic plasticity that often involves redefining of the developmental fate and polarity of cells within differentiated tissues. The plant hormone auxin and its directional intercellular transport play a major role in these processes because they provide positional information and link cell polarity with tissue patterning. This plant-specific mechanism of transport-dependent auxin gradients depends on subcellular dynamics of auxin transport components, in particular on endocytic recycling and polar targeting. Recent insights into these cellular processes in plants have revealed important parallels to yeast and animal systems, including clathrin-dependent endocytosis, retromer function, and transcytosis, but have also emphasized unique features of plant cells such as diversity of polar targeting pathways; integration of environmental signals into subcellular trafficking; and the link between endocytosis, cell polarity, and cell fate specification. We review these advances and focus on the translation of the subcellular dynamics to the regulation of whole-plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Cell and Developmental Biology Annual Reviews

Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development

Loading next page...
 
/lp/annual-reviews/polar-targeting-and-endocytic-recycling-in-auxin-dependent-plant-JVVEu91ONx
Publisher
Annual Reviews
Copyright
Copyright © 2008 by Annual Reviews. All rights reserved
ISSN
1081-0706
eISSN
1530-8995
D.O.I.
10.1146/annurev.cellbio.24.110707.175254
Publisher site
See Article on Publisher Site

Abstract

Plant development is characterized by a profound phenotypic plasticity that often involves redefining of the developmental fate and polarity of cells within differentiated tissues. The plant hormone auxin and its directional intercellular transport play a major role in these processes because they provide positional information and link cell polarity with tissue patterning. This plant-specific mechanism of transport-dependent auxin gradients depends on subcellular dynamics of auxin transport components, in particular on endocytic recycling and polar targeting. Recent insights into these cellular processes in plants have revealed important parallels to yeast and animal systems, including clathrin-dependent endocytosis, retromer function, and transcytosis, but have also emphasized unique features of plant cells such as diversity of polar targeting pathways; integration of environmental signals into subcellular trafficking; and the link between endocytosis, cell polarity, and cell fate specification. We review these advances and focus on the translation of the subcellular dynamics to the regulation of whole-plant development.

Journal

Annual Review of Cell and Developmental BiologyAnnual Reviews

Published: Nov 10, 2008

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off