Physiology of the Neurotrophins

Physiology of the Neurotrophins The neurotrophins are a small group of dimeric proteins that profoundly affect the development of the nervous system of vertebrates. Recent studies have established clear correlations between the survival requirements for different neurotrophins of functionally distinct subsets of sensory neurons. The biological role of the neurotrophins is not limited to the prevention of programmed cell death of specific groups of neurons during development. Neurotrophin-3 in particular seems to act on neurons well before the period of target innervation and of normally occuning cell death. In animals lacking functional neurotrophin or receptor genes, neuronal numbers do not seem to be massively reduced in the CNS, unlike in the PNS. Finally, rapid actions of neurotrophins on synaptic efficacy, as well as the regulation of their mRNAs by electrical activity, suggest that neurotrophins might play important roles in regulating neuronal connectivity in the developing and in the adult central nervous system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Neuroscience Annual Reviews

Loading next page...
 
/lp/annual-reviews/physiology-of-the-neurotrophins-gJ11tvEJHs
Publisher
Annual Reviews
Copyright
Copyright 1996 Annual Reviews. All rights reserved
Subject
Review Articles
ISSN
0147-006X
eISSN
1545-4126
DOI
10.1146/annurev.ne.19.030196.001445
pmid
8833445
Publisher site
See Article on Publisher Site

Abstract

The neurotrophins are a small group of dimeric proteins that profoundly affect the development of the nervous system of vertebrates. Recent studies have established clear correlations between the survival requirements for different neurotrophins of functionally distinct subsets of sensory neurons. The biological role of the neurotrophins is not limited to the prevention of programmed cell death of specific groups of neurons during development. Neurotrophin-3 in particular seems to act on neurons well before the period of target innervation and of normally occuning cell death. In animals lacking functional neurotrophin or receptor genes, neuronal numbers do not seem to be massively reduced in the CNS, unlike in the PNS. Finally, rapid actions of neurotrophins on synaptic efficacy, as well as the regulation of their mRNAs by electrical activity, suggest that neurotrophins might play important roles in regulating neuronal connectivity in the developing and in the adult central nervous system.

Journal

Annual Review of NeuroscienceAnnual Reviews

Published: Mar 1, 1996

Keywords: nerve growth factor; brain-derived neurotrophic factor; neurotrophin-3; sensory neurons; sympathetic neurons

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off