COVARIANCE STRUCTURE ANALYSIS: Statistical Practice, Theory, and Directions

COVARIANCE STRUCTURE ANALYSIS: Statistical Practice, Theory, and Directions ▪ Abstract Although covariance structure analysis is used increasingly to analyze nonexperimental data, important statistical requirements for its proper use are frequently ignored. Valid conclusions about the adequacy of a model as an acceptable representation of data, which are based on goodness-of-fit test statistics and standard errors of parameter estimates, rely on the model estimation procedure being appropriate for the data. Using analogies to linear regression and anova, this review examines conditions under which conclusions drawn from various estimation methods will be correct and the consequences of ignoring these conditions. A distinction is made between estimation methods that are either correctly or incorrectly specified for the distribution of data being analyzed, and it is shown that valid conclusions are possible even under misspecification. A brief example illustrates the ideas. Internet access is given to a computer code for several methods that are not available in programs such as EQS or LISREL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Psychology Annual Reviews

COVARIANCE STRUCTURE ANALYSIS: Statistical Practice, Theory, and Directions

Annual Review of Psychology, Volume 47 (1) – Feb 1, 1996

Loading next page...
 
/lp/annual-reviews/covariance-structure-analysis-statistical-practice-theory-and-v0GFcTCQT3
Publisher
Annual Reviews
Copyright
Copyright © 1996 by Annual Reviews Inc. All rights reserved
Subject
Review Articles
ISSN
0066-4308
eISSN
1545-2085
D.O.I.
10.1146/annurev.psych.47.1.563
Publisher site
See Article on Publisher Site

Abstract

▪ Abstract Although covariance structure analysis is used increasingly to analyze nonexperimental data, important statistical requirements for its proper use are frequently ignored. Valid conclusions about the adequacy of a model as an acceptable representation of data, which are based on goodness-of-fit test statistics and standard errors of parameter estimates, rely on the model estimation procedure being appropriate for the data. Using analogies to linear regression and anova, this review examines conditions under which conclusions drawn from various estimation methods will be correct and the consequences of ignoring these conditions. A distinction is made between estimation methods that are either correctly or incorrectly specified for the distribution of data being analyzed, and it is shown that valid conclusions are possible even under misspecification. A brief example illustrates the ideas. Internet access is given to a computer code for several methods that are not available in programs such as EQS or LISREL.

Journal

Annual Review of PsychologyAnnual Reviews

Published: Feb 1, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off