Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Coal and Biomass to Fuels and Power

Coal and Biomass to Fuels and Power Systems with CO 2 capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO 2 , the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO 2 capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Chemical and Biomolecular Engineering Annual Reviews

Loading next page...
 
/lp/annual-reviews/coal-and-biomass-to-fuels-and-power-Zhz5WKDjJ2
Publisher
Annual Reviews
Copyright
Copyright © 2011 by Annual Reviews. All rights reserved
ISSN
1947-5438
eISSN
1947-5446
DOI
10.1146/annurev-chembioeng-061010-114126
pmid
22432630
Publisher site
See Article on Publisher Site

Abstract

Systems with CO 2 capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO 2 , the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO 2 capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

Journal

Annual Review of Chemical and Biomolecular EngineeringAnnual Reviews

Published: Jul 15, 2011

There are no references for this article.