Classification and Comparison of Small RNAs from Plants

Classification and Comparison of Small RNAs from Plants Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from single-stranded precursors with a hairpin structure (referred to here as hairpin RNAs (hpRNAs)) and those derived from dsRNA precursors (small interfering RNAs (siRNAs)). hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Plant Biology Annual Reviews

Classification and Comparison of Small RNAs from Plants

Loading next page...
 
/lp/annual-reviews/classification-and-comparison-of-small-rnas-from-plants-UQGNniiG7F
Publisher
Annual Reviews
Copyright
Copyright © 2013 by Annual Reviews. All rights reserved
ISSN
1040-2519
D.O.I.
10.1146/annurev-arplant-050312-120043
Publisher site
See Article on Publisher Site

Abstract

Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from single-stranded precursors with a hairpin structure (referred to here as hairpin RNAs (hpRNAs)) and those derived from dsRNA precursors (small interfering RNAs (siRNAs)). hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.

Journal

Annual Review of Plant BiologyAnnual Reviews

Published: Apr 29, 2013

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off