Auxin Biosynthesis and Its Role in Plant Development

Auxin Biosynthesis and Its Role in Plant Development Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. Although the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no single complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan-dependent auxin biosynthesis pathways. Recent findings have also determined that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a crucial angle for analyzing the mechanisms of plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Plant Biology Annual Reviews

Auxin Biosynthesis and Its Role in Plant Development

Annual Review of Plant Biology, Volume 61 – Jun 2, 2010

Loading next page...
 
/lp/annual-reviews/auxin-biosynthesis-and-its-role-in-plant-development-qVcAUPuS78
Publisher
Annual Reviews
Copyright
Copyright © 2010 by Annual Reviews. All rights reserved
ISSN
1040-2519
DOI
10.1146/annurev-arplant-042809-112308
Publisher site
See Article on Publisher Site

Abstract

Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. Although the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no single complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan-dependent auxin biosynthesis pathways. Recent findings have also determined that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a crucial angle for analyzing the mechanisms of plant development.

Journal

Annual Review of Plant BiologyAnnual Reviews

Published: Jun 2, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off