Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Artificially Engineered Protein Polymers

Artificially Engineered Protein Polymers Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Chemical and Biomolecular Engineering Annual Reviews

Loading next page...
 
/lp/annual-reviews/artificially-engineered-protein-polymers-102ZNiRPHs
Publisher
Annual Reviews
Copyright
Copyright © 2017 by Annual Reviews. All rights reserved
ISSN
1947-5438
eISSN
1947-5446
DOI
10.1146/annurev-chembioeng-060816-101620
pmid
28592178
Publisher site
See Article on Publisher Site

Abstract

Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

Journal

Annual Review of Chemical and Biomolecular EngineeringAnnual Reviews

Published: Jun 7, 2017

There are no references for this article.