AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES

AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES ▪ Abstract The mechanisms of plant membrane water permeability have remained elusive until the recent discovery in both vacuolar and plasma membranes of a class of water channel proteins named aquaporins. Similar to their animal counterparts, plant aquaporins have six membrane-spanning domains and belong to the MIP superfamily of transmembrane channel proteins. Their very high efficiency and selectivity in transporting water molecules have been mostly characterized using heterologous expression in Xenopus oocytes. However, techniques set up to measure the osmotic water permeability of plant membranes such as transcellular osmosis, pressure probe measurements, or stopped-flow spectrophotometry are now being used to analyze the function of plant aquaporins in their native membranes. Multiple mechanisms, at the transcriptional and posttranslational levels, control the expression and activity of the numerous aquaporin isoforms found in plants. These studies suggest a general role for aquaporins in regulating transmembrane water transport during the growth, development, and stress responses of plants. Future research will investigate the integrated function of aquaporins in long-distance water transport and cellular osmoregulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annual Review of Plant Biology Annual Reviews

AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES

Annual Review of Plant Biology, Volume 48 (1) – Jun 1, 1997

Loading next page...
 
/lp/annual-reviews/aquaporins-and-water-permeability-of-plant-membranes-0XEH00JWqX
Publisher
Annual Reviews
Copyright
Copyright © 1997 by Annual Reviews Inc. All rights reserved
Subject
Review Articles
ISSN
1040-2519
D.O.I.
10.1146/annurev.arplant.48.1.399
Publisher site
See Article on Publisher Site

Abstract

▪ Abstract The mechanisms of plant membrane water permeability have remained elusive until the recent discovery in both vacuolar and plasma membranes of a class of water channel proteins named aquaporins. Similar to their animal counterparts, plant aquaporins have six membrane-spanning domains and belong to the MIP superfamily of transmembrane channel proteins. Their very high efficiency and selectivity in transporting water molecules have been mostly characterized using heterologous expression in Xenopus oocytes. However, techniques set up to measure the osmotic water permeability of plant membranes such as transcellular osmosis, pressure probe measurements, or stopped-flow spectrophotometry are now being used to analyze the function of plant aquaporins in their native membranes. Multiple mechanisms, at the transcriptional and posttranslational levels, control the expression and activity of the numerous aquaporin isoforms found in plants. These studies suggest a general role for aquaporins in regulating transmembrane water transport during the growth, development, and stress responses of plants. Future research will investigate the integrated function of aquaporins in long-distance water transport and cellular osmoregulation.

Journal

Annual Review of Plant BiologyAnnual Reviews

Published: Jun 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off