WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain

WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice... AbstractThis study evaluates the sensitivity of wind turbine hub-height wind speed forecasts to the planetary boundary layer (PBL) scheme, grid length, and initial condition selection in the Weather Research and Forecasting (WRF) Model over complex terrain. Eight PBL schemes available for the WRF-ARW dynamical core were tested with initial conditions sources from the North American Mesoscale (NAM) model and Global Forecast System (GFS) to produce short-term wind speed forecasts. The largest improvements in forecast accuracy primarily depended on the grid length or PBL scheme choice, although the most important factor varied by location, season, time of day, and bias-correction application. Aggregated over all locations, the Asymmetric Convective Model, version 2 (ACM2) PBL scheme provided the best forecast accuracy, particularly for the 12-km grid length. Other PBL schemes and grid lengths, however, did perform better than the ACM2 scheme for individual seasons or locations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain

Loading next page...
 
/lp/ams/wrf-hub-height-wind-forecast-sensitivity-to-pbl-scheme-grid-length-and-H8oV2vxcaK
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0120.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study evaluates the sensitivity of wind turbine hub-height wind speed forecasts to the planetary boundary layer (PBL) scheme, grid length, and initial condition selection in the Weather Research and Forecasting (WRF) Model over complex terrain. Eight PBL schemes available for the WRF-ARW dynamical core were tested with initial conditions sources from the North American Mesoscale (NAM) model and Global Forecast System (GFS) to produce short-term wind speed forecasts. The largest improvements in forecast accuracy primarily depended on the grid length or PBL scheme choice, although the most important factor varied by location, season, time of day, and bias-correction application. Aggregated over all locations, the Asymmetric Convective Model, version 2 (ACM2) PBL scheme provided the best forecast accuracy, particularly for the 12-km grid length. Other PBL schemes and grid lengths, however, did perform better than the ACM2 scheme for individual seasons or locations.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Apr 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off