Wind Tunnel Results for a Distributed Flush Airdata System

Wind Tunnel Results for a Distributed Flush Airdata System AbstractThe multihole probe (MHP) is an effective instrument for relative wind measurements from small unmanned aircraft systems (sUAS). Two common drawbacks for the integration of commercial MHP systems into low-cost sUAS are that 1) the MHP airdata system cost can be several times that of the sUAS airframe; and 2) when extended from the airframe, the pressure-measuring probe is often exposed to damage during normal operations. A flush airdata system (FADS) with static pressure sensing ports mounted flush with the airframe skin provides an alternative to the MHP system. This project implements a FADS with multiple static pressure sensors located at selected locations on the airframe. Computational fluid dynamics simulations are used to determine the airframe locations with the highest pressure change sensitivity to changes in the airframe angle of attack and sideslip angle. Wind tunnel test results are reported with nonlinear least squares and neural networks regression methods applied to the pressure measurements to estimate the instantaneous angle of attack and sideslip. Both methods achieved mean errors of less than . A direct comparison of the regression methods show that the neural network method provides a more accurate relative wind angle estimate than the nonlinear least squares method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Wind Tunnel Results for a Distributed Flush Airdata System

Loading next page...
 
/lp/ams/wind-tunnel-results-for-a-distributed-flush-airdata-system-HgyYMdRVlg
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0242.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe multihole probe (MHP) is an effective instrument for relative wind measurements from small unmanned aircraft systems (sUAS). Two common drawbacks for the integration of commercial MHP systems into low-cost sUAS are that 1) the MHP airdata system cost can be several times that of the sUAS airframe; and 2) when extended from the airframe, the pressure-measuring probe is often exposed to damage during normal operations. A flush airdata system (FADS) with static pressure sensing ports mounted flush with the airframe skin provides an alternative to the MHP system. This project implements a FADS with multiple static pressure sensors located at selected locations on the airframe. Computational fluid dynamics simulations are used to determine the airframe locations with the highest pressure change sensitivity to changes in the airframe angle of attack and sideslip angle. Wind tunnel test results are reported with nonlinear least squares and neural networks regression methods applied to the pressure measurements to estimate the instantaneous angle of attack and sideslip. Both methods achieved mean errors of less than . A direct comparison of the regression methods show that the neural network method provides a more accurate relative wind angle estimate than the nonlinear least squares method.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jul 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off