What is the Uncertainty in Degree-Day Projections due to Different Calibration Methodologies?

What is the Uncertainty in Degree-Day Projections due to Different Calibration Methodologies? AbstractDegree-days are a temperature index used for understanding the impact of climate change. Different methods to deal with climate model biases, termed bias correction or more generally calibration, yield different projections of such indices, something not widely understood for temperature indices in many impact sectors. An analytical expression is derived for the expected value of degree-days given parameters of the underlying statistical distribution (assumed to be Gaussian). It is demonstrated that the uncertainty introduced by calibration methodology is driven by the magnitude of the nonlinearity in this expression. In a climate where mean temperature is, and remains, far from (approximately three standard deviations) the threshold used in defining the index, the equation is approximately linear, and methodological choice makes little difference relative to the absolute number of degree-days. However, case studies for U.K. cities London and Glasgow for heating and cooling degree-days (HDD and CDD; these are degree-day indices used in the estimation of energy use for heating and cooling buildings) demonstrate that, when temperatures are close to the threshold, unrealistic results may arise if appropriate calibration is not performed. Seasonally varying temperature biases in the 11-member perturbed parameter ensemble HadRM3 are discussed, and different calibration strategies are applied to this ensemble. For projections of U.K. HDD, the difference between results from simple and advanced methodologies is relatively small, as the expression for HDD is approximately linear in many months and locations. For U.K. CDD, an inappropriate method has a large relative impact on projections because of the proximity to the threshold. In both cases, the uncertainty caused by methodology is comparable to that caused by ensemble spread. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

What is the Uncertainty in Degree-Day Projections due to Different Calibration Methodologies?

Loading next page...
 
/lp/ams/what-is-the-uncertainty-in-degree-day-projections-due-to-different-MZLuso9PDA
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0826.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDegree-days are a temperature index used for understanding the impact of climate change. Different methods to deal with climate model biases, termed bias correction or more generally calibration, yield different projections of such indices, something not widely understood for temperature indices in many impact sectors. An analytical expression is derived for the expected value of degree-days given parameters of the underlying statistical distribution (assumed to be Gaussian). It is demonstrated that the uncertainty introduced by calibration methodology is driven by the magnitude of the nonlinearity in this expression. In a climate where mean temperature is, and remains, far from (approximately three standard deviations) the threshold used in defining the index, the equation is approximately linear, and methodological choice makes little difference relative to the absolute number of degree-days. However, case studies for U.K. cities London and Glasgow for heating and cooling degree-days (HDD and CDD; these are degree-day indices used in the estimation of energy use for heating and cooling buildings) demonstrate that, when temperatures are close to the threshold, unrealistic results may arise if appropriate calibration is not performed. Seasonally varying temperature biases in the 11-member perturbed parameter ensemble HadRM3 are discussed, and different calibration strategies are applied to this ensemble. For projections of U.K. HDD, the difference between results from simple and advanced methodologies is relatively small, as the expression for HDD is approximately linear in many months and locations. For U.K. CDD, an inappropriate method has a large relative impact on projections because of the proximity to the threshold. In both cases, the uncertainty caused by methodology is comparable to that caused by ensemble spread.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial