Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles

Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles AbstractPrevious studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles

Loading next page...
 
/lp/ams/wave-mean-flow-interactions-in-moist-baroclinic-life-cycles-VeB0h8FT12
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0329.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jul 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial