Water Budget and Intensity Change of Tropical Cyclones over the Western North Pacific

Water Budget and Intensity Change of Tropical Cyclones over the Western North Pacific AbstractThree satellite observational datasets and a reanalysis dataset during the period 2001–09 are used to examine four water budget components (total precipitable water, surface evaporation, precipitation, and column-integrated moisture flux convergence) associated with western North Pacific tropical cyclones (TCs) of different intensity change categories: rapidly intensifying, slowly intensifying, neutral, and weakening. The results show that surface evaporation plays an important role in storm rapid intensification (RI) and the highest evaporation associated with rapidly intensifying TCs is associated with the highest sea surface temperature. Total precipitable water in the outer environment, where moisture is mainly provided by surface evaporation, is also vital to storm RI because RI is favored when there is less dry air intruded into the storm circulation. The roles of surface evaporation and total precipitable water in storm RI are related to the enhanced convective available potential energy by moistening and warming the boundary layer. The largest amount of column-integrated moisture flux convergence associated with weakening TCs, which results in the heaviest precipitation, is because their strongest mean intensity promotes moisture transport. It is suggested that different water budget components play different roles in TC intensity change. The results agree with the notion that TC intensity change results from a competition between surface moisture and heat fluxes and low-entropy downdrafts into the boundary layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Water Budget and Intensity Change of Tropical Cyclones over the Western North Pacific

Loading next page...
 
/lp/ams/water-budget-and-intensity-change-of-tropical-cyclones-over-the-4JWhDqtuPP
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0033.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThree satellite observational datasets and a reanalysis dataset during the period 2001–09 are used to examine four water budget components (total precipitable water, surface evaporation, precipitation, and column-integrated moisture flux convergence) associated with western North Pacific tropical cyclones (TCs) of different intensity change categories: rapidly intensifying, slowly intensifying, neutral, and weakening. The results show that surface evaporation plays an important role in storm rapid intensification (RI) and the highest evaporation associated with rapidly intensifying TCs is associated with the highest sea surface temperature. Total precipitable water in the outer environment, where moisture is mainly provided by surface evaporation, is also vital to storm RI because RI is favored when there is less dry air intruded into the storm circulation. The roles of surface evaporation and total precipitable water in storm RI are related to the enhanced convective available potential energy by moistening and warming the boundary layer. The largest amount of column-integrated moisture flux convergence associated with weakening TCs, which results in the heaviest precipitation, is because their strongest mean intensity promotes moisture transport. It is suggested that different water budget components play different roles in TC intensity change. The results agree with the notion that TC intensity change results from a competition between surface moisture and heat fluxes and low-entropy downdrafts into the boundary layer.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off