Vineyard Energy Partitioning Between Canopy and Soil Surface: Dynamics and Biophysical Controls

Vineyard Energy Partitioning Between Canopy and Soil Surface: Dynamics and Biophysical Controls AbstractFor sparse planting crops, soil surface plays an important role in energy balance processes within the soil–canopy–atmosphere continuum; thus, it is necessary to partition field energy fluxes into soil surface and canopy to provide useful information to reduce agricultural water use and to develop evapotranspiration models. Field experiments were conducted in vineyards during four growing seasons to examine the energy partitioning among soil surface, canopy, and field separately. Vineyard energy fluxes including latent heat (LE) were measured by eddy covariance system and canopy latent heat LEc was obtained from sap flow. Then, soil surface latent heat LEs was calculated as the difference between LE and LEc. The Bowen ratio and the ratio of latent heat to available energy were used to examine energy partitioning. Results indicate daily and hourly LEs obtained from LE and LEc overestimated microlysimeter-derived values by 13.0% and 10.8%, respectively. Seasonal-average latent heat accounted for 59.0%–64.3%, 65.8%–77.8%, and 56.6%–62.5% of corresponding available energy for vineyard, canopy, and soil surface, respectively. Soil water content and canopy were the main controlling factors on energy partitioning. Surface soil moisture explained 32%, 11%, and 52% of the seasonal variability in energy partitioning at field, canopy, and soil surface, respectively. Leaf area index explained 41% and 26% of the seasonal variability in energy partitioning at field and soil surface. Air temperature was related to canopy and field energy partitioning. During wet periods, soil can absorb sensible heat from the canopy and LEs may exceed soil surface available energy, while during dry periods, the canopy may absorb sensible heat from the soil and LEc may exceed canopy available energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Vineyard Energy Partitioning Between Canopy and Soil Surface: Dynamics and Biophysical Controls

Loading next page...
 
/lp/ams/vineyard-energy-partitioning-between-canopy-and-soil-surface-dynamics-bQhBYemqEz
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0122.1
Publisher site
See Article on Publisher Site

Abstract

AbstractFor sparse planting crops, soil surface plays an important role in energy balance processes within the soil–canopy–atmosphere continuum; thus, it is necessary to partition field energy fluxes into soil surface and canopy to provide useful information to reduce agricultural water use and to develop evapotranspiration models. Field experiments were conducted in vineyards during four growing seasons to examine the energy partitioning among soil surface, canopy, and field separately. Vineyard energy fluxes including latent heat (LE) were measured by eddy covariance system and canopy latent heat LEc was obtained from sap flow. Then, soil surface latent heat LEs was calculated as the difference between LE and LEc. The Bowen ratio and the ratio of latent heat to available energy were used to examine energy partitioning. Results indicate daily and hourly LEs obtained from LE and LEc overestimated microlysimeter-derived values by 13.0% and 10.8%, respectively. Seasonal-average latent heat accounted for 59.0%–64.3%, 65.8%–77.8%, and 56.6%–62.5% of corresponding available energy for vineyard, canopy, and soil surface, respectively. Soil water content and canopy were the main controlling factors on energy partitioning. Surface soil moisture explained 32%, 11%, and 52% of the seasonal variability in energy partitioning at field, canopy, and soil surface, respectively. Leaf area index explained 41% and 26% of the seasonal variability in energy partitioning at field and soil surface. Air temperature was related to canopy and field energy partitioning. During wet periods, soil can absorb sensible heat from the canopy and LEs may exceed soil surface available energy, while during dry periods, the canopy may absorb sensible heat from the soil and LEc may exceed canopy available energy.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Jul 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off