Validation of GMI Snowfall Observations by Using a Combination of Weather Radar and Surface Measurements

Validation of GMI Snowfall Observations by Using a Combination of Weather Radar and Surface... AbstractCurrently, there are several spaceborne microwave instruments suitable for the detection and quantitative estimation of snowfall. To test and improve retrieval snowfall algorithms, ground validation datasets that combine detailed characterization of snowfall microphysics and spatial precipitation measurements are required. To this endpoint, measurements of snow microphysics are combined with large-scale weather radar observations to generate such a dataset. The quantitative snowfall estimates are computed by applying event-specific relations between the equivalent reflectivity factor and snowfall rate to weather radar observations. The relations are derived using retrieved ice particle microphysical properties from observations that were carried out at the University of Helsinki research station in Hyytiälä, Finland, which is about 64 km east of the radar. For each event, the uncertainties of the estimate are also determined. The feasibility of using this type of data to validate spaceborne snowfall measurements and algorithms is demonstrated with the NASA GPM Microwave Imager (GMI) snowfall product. The detection skill and retrieved surface snowfall precipitation of the GPROF detection algorithm, versions V04A and V05A, are assessed over southern Finland. On the basis of the 26 studied overpasses, probability of detection (POD) is 0.90 for version V04A and 0.84 for version V05A, and corresponding false-alarm rates are 0.09 and 0.10, respectively. A clear dependence of detection skill on cloud echo top height is shown: POD increased from 0.8 to 0.99 (V04A) and from 0.61 to 0.94 (V05A) as the cloud echo top altitude increased from 2 to 5 km. Both versions underestimate the snowfall rate by factors of 6 (V04A) and 3 (V05A). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Validation of GMI Snowfall Observations by Using a Combination of Weather Radar and Surface Measurements

Loading next page...
 
/lp/ams/validation-of-gmi-snowfall-observations-by-using-a-combination-of-nm3L2PTr2R
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0176.1
Publisher site
See Article on Publisher Site

Abstract

AbstractCurrently, there are several spaceborne microwave instruments suitable for the detection and quantitative estimation of snowfall. To test and improve retrieval snowfall algorithms, ground validation datasets that combine detailed characterization of snowfall microphysics and spatial precipitation measurements are required. To this endpoint, measurements of snow microphysics are combined with large-scale weather radar observations to generate such a dataset. The quantitative snowfall estimates are computed by applying event-specific relations between the equivalent reflectivity factor and snowfall rate to weather radar observations. The relations are derived using retrieved ice particle microphysical properties from observations that were carried out at the University of Helsinki research station in Hyytiälä, Finland, which is about 64 km east of the radar. For each event, the uncertainties of the estimate are also determined. The feasibility of using this type of data to validate spaceborne snowfall measurements and algorithms is demonstrated with the NASA GPM Microwave Imager (GMI) snowfall product. The detection skill and retrieved surface snowfall precipitation of the GPROF detection algorithm, versions V04A and V05A, are assessed over southern Finland. On the basis of the 26 studied overpasses, probability of detection (POD) is 0.90 for version V04A and 0.84 for version V05A, and corresponding false-alarm rates are 0.09 and 0.10, respectively. A clear dependence of detection skill on cloud echo top height is shown: POD increased from 0.8 to 0.99 (V04A) and from 0.61 to 0.94 (V05A) as the cloud echo top altitude increased from 2 to 5 km. Both versions underestimate the snowfall rate by factors of 6 (V04A) and 3 (V05A).

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Apr 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off