Validation of CLIGEN Parameter Adjustment Methods for Southeastern Australia and Southwestern Western Australia

Validation of CLIGEN Parameter Adjustment Methods for Southeastern Australia and Southwestern... AbstractGlobal climate models (GCMs) are usually used for future climate projections. Model output from GCMs needs to be downscaled and stochastic weather generators such as Climate Generator (CLIGEN) are tools to downscale GCM output and to produce synthetic weather sequences that are statistically similar to the observed weather data. Two methods of adjusting CLIGEN parameters were developed to reproduce precipitation sequences for southeastern Australia (SEA), where significant changes in annual precipitation had occurred, and for southwestern Western Australia (SWWA), where the precipitation has shown a significant decreasing trend since the 1920s. The adjustment methods have been validated using observed precipitation data for these regions. However, CLIGEN outputs ultimately will be used as input to other simulation models. The objective of this research was to further validate the methods of CLIGEN parameter adjustment using conceptual hydrological models to simulate streamflow and to compare the streamflow using observed and CLIGEN-generated precipitation data. Six precipitation sites from SEA and SWWA were selected and synthetic time series of daily precipitation were generated for these sites. Conceptual hydrological models, namely, the Australian Water Balance Model and SimHyd, were used for flow simulation and were calibrated using recorded daily streamflow data from six gauging stations in SEA and SWWA. Both monthly and annual streamflow show statistically similar patterns using observed and CLIGEN-generated precipitation data. The adjustment methods for CLIGEN parameters are further validated and can be used to reproduce the significant changes, both abrupt and gradually decreasing, in streamflow for these two climatically contrasting regions of Australia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Validation of CLIGEN Parameter Adjustment Methods for Southeastern Australia and Southwestern Western Australia

Loading next page...
 
/lp/ams/validation-of-cligen-parameter-adjustment-methods-for-southeastern-gnEfOi4fwc
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0237.1
Publisher site
See Article on Publisher Site

Abstract

AbstractGlobal climate models (GCMs) are usually used for future climate projections. Model output from GCMs needs to be downscaled and stochastic weather generators such as Climate Generator (CLIGEN) are tools to downscale GCM output and to produce synthetic weather sequences that are statistically similar to the observed weather data. Two methods of adjusting CLIGEN parameters were developed to reproduce precipitation sequences for southeastern Australia (SEA), where significant changes in annual precipitation had occurred, and for southwestern Western Australia (SWWA), where the precipitation has shown a significant decreasing trend since the 1920s. The adjustment methods have been validated using observed precipitation data for these regions. However, CLIGEN outputs ultimately will be used as input to other simulation models. The objective of this research was to further validate the methods of CLIGEN parameter adjustment using conceptual hydrological models to simulate streamflow and to compare the streamflow using observed and CLIGEN-generated precipitation data. Six precipitation sites from SEA and SWWA were selected and synthetic time series of daily precipitation were generated for these sites. Conceptual hydrological models, namely, the Australian Water Balance Model and SimHyd, were used for flow simulation and were calibrated using recorded daily streamflow data from six gauging stations in SEA and SWWA. Both monthly and annual streamflow show statistically similar patterns using observed and CLIGEN-generated precipitation data. The adjustment methods for CLIGEN parameters are further validated and can be used to reproduce the significant changes, both abrupt and gradually decreasing, in streamflow for these two climatically contrasting regions of Australia.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Jul 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off