Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in... AbstractLong-term Atmospheric Radiation Measurement (ARM) datasets collected at the three tropical western Pacific (TWP) sites are used to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. A number of CAM5 simulations are conducted at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from analysis or reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m−2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, produce feedback onto clouds. Both the model and observations show distinct diurnal cycles in total, stratiform, and convective cloud fractions; however, they are out of phase by 12 h and the biases vary by site. The results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. The approach used here can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

Loading next page...
 
/lp/ams/using-the-atmospheric-radiation-measurement-arm-datasets-to-evaluate-sVaq7KUhrb
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0362.1
Publisher site
See Article on Publisher Site

Abstract

AbstractLong-term Atmospheric Radiation Measurement (ARM) datasets collected at the three tropical western Pacific (TWP) sites are used to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. A number of CAM5 simulations are conducted at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from analysis or reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m−2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, produce feedback onto clouds. Both the model and observations show distinct diurnal cycles in total, stratiform, and convective cloud fractions; however, they are out of phase by 12 h and the biases vary by site. The results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. The approach used here can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional models.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off