Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate Relationships with ENSO

Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate... AbstractMany studies have used observational data to explore associations between El Niño–Southern Oscillation (ENSO) and western North America (NA) hydroclimate at regional spatial scales. However, relationships between tropical Pacific sea surface temperature (SST) variability and western NA hydroclimate at local scales using reanalysis data are less understood. Here, the current understanding of relationships between large-scale tropical Pacific SST variability and western NA hydroclimate is extended to localized headwaters. To accomplish this, high-resolution reanalysis data (i.e., monthly mean surface precipitation rate, 2-m temperature, 850-mb specific humidity, and 500-mb omega) were used for gridpoint correlation analyses with Niño-3.4 SST and El Niño Modoki indices. Reanalysis time series data were provided by the National Centers for Environmental Prediction North American Regional Reanalysis (NARR) product. To validate the accuracy of NARR surface data, observational Livneh precipitation and temperature data were used. Resulting correlations between tropical Pacific indices and NARR surface precipitation and 2-m temperature are consistent with previous research both spatially and temporally, indicating that the strongest correlations occur primarily over southwestern NA during the winter (DJF). The results herein demonstrate the potential of high-resolution reanalysis data to reveal distinct correlations over topographically complex watersheds in the U.S. Intermountain West (IMW) over the recent record, 1979–2015. The use of the high-resolution NARR product as a viable option to explore western NA hydroclimate is demonstrated here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate Relationships with ENSO

Loading next page...
 
/lp/ams/using-high-resolution-reanalysis-data-to-explore-localized-western-CGJFubRTNI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0476.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMany studies have used observational data to explore associations between El Niño–Southern Oscillation (ENSO) and western North America (NA) hydroclimate at regional spatial scales. However, relationships between tropical Pacific sea surface temperature (SST) variability and western NA hydroclimate at local scales using reanalysis data are less understood. Here, the current understanding of relationships between large-scale tropical Pacific SST variability and western NA hydroclimate is extended to localized headwaters. To accomplish this, high-resolution reanalysis data (i.e., monthly mean surface precipitation rate, 2-m temperature, 850-mb specific humidity, and 500-mb omega) were used for gridpoint correlation analyses with Niño-3.4 SST and El Niño Modoki indices. Reanalysis time series data were provided by the National Centers for Environmental Prediction North American Regional Reanalysis (NARR) product. To validate the accuracy of NARR surface data, observational Livneh precipitation and temperature data were used. Resulting correlations between tropical Pacific indices and NARR surface precipitation and 2-m temperature are consistent with previous research both spatially and temporally, indicating that the strongest correlations occur primarily over southwestern NA during the winter (DJF). The results herein demonstrate the potential of high-resolution reanalysis data to reveal distinct correlations over topographically complex watersheds in the U.S. Intermountain West (IMW) over the recent record, 1979–2015. The use of the high-resolution NARR product as a viable option to explore western NA hydroclimate is demonstrated here.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off