Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate Relationships with ENSO

Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate... AbstractMany studies have used observational data to explore associations between El Niño–Southern Oscillation (ENSO) and western North America (NA) hydroclimate at regional spatial scales. However, relationships between tropical Pacific sea surface temperature (SST) variability and western NA hydroclimate at local scales using reanalysis data are less understood. Here, the current understanding of relationships between large-scale tropical Pacific SST variability and western NA hydroclimate is extended to localized headwaters. To accomplish this, high-resolution reanalysis data (i.e., monthly mean surface precipitation rate, 2-m temperature, 850-mb specific humidity, and 500-mb omega) were used for gridpoint correlation analyses with Niño-3.4 SST and El Niño Modoki indices. Reanalysis time series data were provided by the National Centers for Environmental Prediction North American Regional Reanalysis (NARR) product. To validate the accuracy of NARR surface data, observational Livneh precipitation and temperature data were used. Resulting correlations between tropical Pacific indices and NARR surface precipitation and 2-m temperature are consistent with previous research both spatially and temporally, indicating that the strongest correlations occur primarily over southwestern NA during the winter (DJF). The results herein demonstrate the potential of high-resolution reanalysis data to reveal distinct correlations over topographically complex watersheds in the U.S. Intermountain West (IMW) over the recent record, 1979–2015. The use of the high-resolution NARR product as a viable option to explore western NA hydroclimate is demonstrated here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Using High-Resolution Reanalysis Data to Explore Localized Western North America Hydroclimate Relationships with ENSO

Loading next page...
 
/lp/ams/using-high-resolution-reanalysis-data-to-explore-localized-western-CGJFubRTNI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0476.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMany studies have used observational data to explore associations between El Niño–Southern Oscillation (ENSO) and western North America (NA) hydroclimate at regional spatial scales. However, relationships between tropical Pacific sea surface temperature (SST) variability and western NA hydroclimate at local scales using reanalysis data are less understood. Here, the current understanding of relationships between large-scale tropical Pacific SST variability and western NA hydroclimate is extended to localized headwaters. To accomplish this, high-resolution reanalysis data (i.e., monthly mean surface precipitation rate, 2-m temperature, 850-mb specific humidity, and 500-mb omega) were used for gridpoint correlation analyses with Niño-3.4 SST and El Niño Modoki indices. Reanalysis time series data were provided by the National Centers for Environmental Prediction North American Regional Reanalysis (NARR) product. To validate the accuracy of NARR surface data, observational Livneh precipitation and temperature data were used. Resulting correlations between tropical Pacific indices and NARR surface precipitation and 2-m temperature are consistent with previous research both spatially and temporally, indicating that the strongest correlations occur primarily over southwestern NA during the winter (DJF). The results herein demonstrate the potential of high-resolution reanalysis data to reveal distinct correlations over topographically complex watersheds in the U.S. Intermountain West (IMW) over the recent record, 1979–2015. The use of the high-resolution NARR product as a viable option to explore western NA hydroclimate is demonstrated here.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off