Using 3D Laser Scanning Technology to Create Digital Models of Hailstones

Using 3D Laser Scanning Technology to Create Digital Models of Hailstones AbstractThe emergence of 3D scanning technologies has provided a new opportunity to explore the shape characteristics of hailstones in great detail. The ability to effectively map the shape of hailstones will improve assessments of hailstone aerodynamic properties, how their density relates to their strength, and how radar energy is scattered. Ultimately, 3D scanning of hailstones will contribute toward research in hail detection, forecasting, and damage mitigation of severe hail, which accounts for well over $1 billion in annual insured losses.The use of a handheld 3D laser scanner in a field setting was explored during field campaigns in 2015 and 2016. Hailstones were collected following thunderstorm passages and were measured, weighed, and scanned. The system was successful in capturing 3D models of more than 40 hailstones. A full scan takes approximately 3 minutes to complete, and data can be captured at a resolution of 0.008 cm. It is believed this is the first time such a system has been used to produce 3D digital hailstone models. Analysis of the model data has shown that hailstones depart from spherical shapes as they increase in diameter, and that bulk density and strength show little correlation. While the dataset presented here is small, the use of 3D scanners in the field is a practical method to obtain detailed datasets on hailstone characteristics. In addition, these data could be used to 3D-print hailstones to explore their aerodynamics, to produce cavity molds for ice impact tests, and for modeling radar scattering properties of natural hailstone shapes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Using 3D Laser Scanning Technology to Create Digital Models of Hailstones

Loading next page...
 
/lp/ams/using-3d-laser-scanning-technology-to-create-digital-models-of-9NbOxg0lNC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
eISSN
1520-0477
D.O.I.
10.1175/BAMS-D-15-00314.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe emergence of 3D scanning technologies has provided a new opportunity to explore the shape characteristics of hailstones in great detail. The ability to effectively map the shape of hailstones will improve assessments of hailstone aerodynamic properties, how their density relates to their strength, and how radar energy is scattered. Ultimately, 3D scanning of hailstones will contribute toward research in hail detection, forecasting, and damage mitigation of severe hail, which accounts for well over $1 billion in annual insured losses.The use of a handheld 3D laser scanner in a field setting was explored during field campaigns in 2015 and 2016. Hailstones were collected following thunderstorm passages and were measured, weighed, and scanned. The system was successful in capturing 3D models of more than 40 hailstones. A full scan takes approximately 3 minutes to complete, and data can be captured at a resolution of 0.008 cm. It is believed this is the first time such a system has been used to produce 3D digital hailstone models. Analysis of the model data has shown that hailstones depart from spherical shapes as they increase in diameter, and that bulk density and strength show little correlation. While the dataset presented here is small, the use of 3D scanners in the field is a practical method to obtain detailed datasets on hailstone characteristics. In addition, these data could be used to 3D-print hailstones to explore their aerodynamics, to produce cavity molds for ice impact tests, and for modeling radar scattering properties of natural hailstone shapes.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial