Using 3D Laser Scanning Technology to Create Digital Models of Hailstones

Using 3D Laser Scanning Technology to Create Digital Models of Hailstones AbstractThe emergence of 3D scanning technologies has provided a new opportunity to explore the shape characteristics of hailstones in great detail. The ability to effectively map the shape of hailstones will improve assessments of hailstone aerodynamic properties, how their density relates to their strength, and how radar energy is scattered. Ultimately, 3D scanning of hailstones will contribute toward research in hail detection, forecasting, and damage mitigation of severe hail, which accounts for well over $1 billion in annual insured losses.The use of a handheld 3D laser scanner in a field setting was explored during field campaigns in 2015 and 2016. Hailstones were collected following thunderstorm passages and were measured, weighed, and scanned. The system was successful in capturing 3D models of more than 40 hailstones. A full scan takes approximately 3 minutes to complete, and data can be captured at a resolution of 0.008 cm. It is believed this is the first time such a system has been used to produce 3D digital hailstone models. Analysis of the model data has shown that hailstones depart from spherical shapes as they increase in diameter, and that bulk density and strength show little correlation. While the dataset presented here is small, the use of 3D scanners in the field is a practical method to obtain detailed datasets on hailstone characteristics. In addition, these data could be used to 3D-print hailstones to explore their aerodynamics, to produce cavity molds for ice impact tests, and for modeling radar scattering properties of natural hailstone shapes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Using 3D Laser Scanning Technology to Create Digital Models of Hailstones

Loading next page...
 
/lp/ams/using-3d-laser-scanning-technology-to-create-digital-models-of-9NbOxg0lNC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
eISSN
1520-0477
D.O.I.
10.1175/BAMS-D-15-00314.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe emergence of 3D scanning technologies has provided a new opportunity to explore the shape characteristics of hailstones in great detail. The ability to effectively map the shape of hailstones will improve assessments of hailstone aerodynamic properties, how their density relates to their strength, and how radar energy is scattered. Ultimately, 3D scanning of hailstones will contribute toward research in hail detection, forecasting, and damage mitigation of severe hail, which accounts for well over $1 billion in annual insured losses.The use of a handheld 3D laser scanner in a field setting was explored during field campaigns in 2015 and 2016. Hailstones were collected following thunderstorm passages and were measured, weighed, and scanned. The system was successful in capturing 3D models of more than 40 hailstones. A full scan takes approximately 3 minutes to complete, and data can be captured at a resolution of 0.008 cm. It is believed this is the first time such a system has been used to produce 3D digital hailstone models. Analysis of the model data has shown that hailstones depart from spherical shapes as they increase in diameter, and that bulk density and strength show little correlation. While the dataset presented here is small, the use of 3D scanners in the field is a practical method to obtain detailed datasets on hailstone characteristics. In addition, these data could be used to 3D-print hailstones to explore their aerodynamics, to produce cavity molds for ice impact tests, and for modeling radar scattering properties of natural hailstone shapes.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off