Upward Electrical Discharges From Thunderstorm Tops

Upward Electrical Discharges From Thunderstorm Tops A variety of storm top electrical discharges have been observed using several types of low-light imagers, film, and the human eye. Recently, a video recorded an unprecedented, bright blue upward discharge from a tropical thunderstorm top near Puerto Rico. The event reached the base of the ionosphere. The horizontal dimensions of cloud top discharges can range from 100 m to several kilometers. Upward extents vary from 100 m to 70 km. Shapes include points of light, upwardly flaring trumpets, and narrow, vertical, lightning-like channels, some topped with expanding blue, flame-like features. Visual appearances range from brilliant white lightning-like channels to a grainy, almost particulate appearing jets of dim blue light, and sometimes as a blue flame within which a brilliant white channel appears. The classical blue jet is at the lower limit of human night vision whereas some upward discharges have been clearly seen during daylight. Cloud top pixies last no longer than 16.7 ms, whereas upward lightning-like channels are often characterized as long lasting (2.0 s or more). To date, optical measurements have not associated cloud-top events with specific lightning flashes. There is a strong tendency for all such events to occur above the convective dome of rapidly intensifying thunderstorms. It is possible that the great diversity of forms illustrates the complexity inherent in the upward streamer mechanism for blue jets. It is also possible that the basic blue jet is only one of several distinct classes of discharges from highly electrified storm cloud tops. Future research should focus on rapidly growing convective storm tops, including supercells and intense oceanic storms, as opposed to the stratiform regions of large mesoscale convective systems that have characterized sprite observations to date. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/upward-electrical-discharges-from-thunderstorm-tops-xlHHwGLqKx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-84-4-445
Publisher site
See Article on Publisher Site

Abstract

A variety of storm top electrical discharges have been observed using several types of low-light imagers, film, and the human eye. Recently, a video recorded an unprecedented, bright blue upward discharge from a tropical thunderstorm top near Puerto Rico. The event reached the base of the ionosphere. The horizontal dimensions of cloud top discharges can range from 100 m to several kilometers. Upward extents vary from 100 m to 70 km. Shapes include points of light, upwardly flaring trumpets, and narrow, vertical, lightning-like channels, some topped with expanding blue, flame-like features. Visual appearances range from brilliant white lightning-like channels to a grainy, almost particulate appearing jets of dim blue light, and sometimes as a blue flame within which a brilliant white channel appears. The classical blue jet is at the lower limit of human night vision whereas some upward discharges have been clearly seen during daylight. Cloud top pixies last no longer than 16.7 ms, whereas upward lightning-like channels are often characterized as long lasting (2.0 s or more). To date, optical measurements have not associated cloud-top events with specific lightning flashes. There is a strong tendency for all such events to occur above the convective dome of rapidly intensifying thunderstorms. It is possible that the great diversity of forms illustrates the complexity inherent in the upward streamer mechanism for blue jets. It is also possible that the basic blue jet is only one of several distinct classes of discharges from highly electrified storm cloud tops. Future research should focus on rapidly growing convective storm tops, including supercells and intense oceanic storms, as opposed to the stratiform regions of large mesoscale convective systems that have characterized sprite observations to date.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 19, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off