Understanding Biases in Tropical Cyclone Intensity Forecast Error

Understanding Biases in Tropical Cyclone Intensity Forecast Error AbstractThe characteristics of 24-h official forecast errors (OFEs) of tropical cyclone (TC) intensity are analyzed over the North Atlantic, east Pacific, and western North Pacific. The OFE is demonstrated to be strongly anticorrelated with TC intensity change with correlation coefficients of −0.77, −0.77, and −0.68 for the three basins, respectively. The 24-h intensity change in the official forecast closely follows a Gaussian distribution with a standard deviation only ⅔ of that in nature, suggesting the current official forecasts estimate fewer cases of large intensity change. The intensifying systems tend to produce negative errors (underforecast), while weakening systems have consistent positive errors (overforecast). This asymmetrical bias is larger for extreme intensity change, including rapid intensification (RI) and rapid weakening (RW). To understand this behavior, the errors are analyzed in a simple objective model, the trend-persistence model (TPM). The TPM exhibits the same error-intensity change correlation. In the TPM, the error can be understood as it is exactly inversely proportional to the finite difference form of the concavity or second derivative of the intensity–time curve. The occurrence of large negative (positive) errors indicates the intensity–time curve is concave upward (downward) in nature during the TC’s rapid intensification (weakening) process. Thus, the fundamental feature of the OFE distribution is related to the shape of the intensity–time curve, governed by TC dynamics. All forecast systems have difficulty forecasting an accelerating rate of change, or a large second derivative of the intensity–time curve. TPM may also be useful as a baseline in evaluating the skill of official forecasts. According to this baseline, official forecasts are more skillful in RW than in RI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Understanding Biases in Tropical Cyclone Intensity Forecast Error

Loading next page...
 
/lp/ams/understanding-biases-in-tropical-cyclone-intensity-forecast-error-E6fOzuR7lG
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0106.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe characteristics of 24-h official forecast errors (OFEs) of tropical cyclone (TC) intensity are analyzed over the North Atlantic, east Pacific, and western North Pacific. The OFE is demonstrated to be strongly anticorrelated with TC intensity change with correlation coefficients of −0.77, −0.77, and −0.68 for the three basins, respectively. The 24-h intensity change in the official forecast closely follows a Gaussian distribution with a standard deviation only ⅔ of that in nature, suggesting the current official forecasts estimate fewer cases of large intensity change. The intensifying systems tend to produce negative errors (underforecast), while weakening systems have consistent positive errors (overforecast). This asymmetrical bias is larger for extreme intensity change, including rapid intensification (RI) and rapid weakening (RW). To understand this behavior, the errors are analyzed in a simple objective model, the trend-persistence model (TPM). The TPM exhibits the same error-intensity change correlation. In the TPM, the error can be understood as it is exactly inversely proportional to the finite difference form of the concavity or second derivative of the intensity–time curve. The occurrence of large negative (positive) errors indicates the intensity–time curve is concave upward (downward) in nature during the TC’s rapid intensification (weakening) process. Thus, the fundamental feature of the OFE distribution is related to the shape of the intensity–time curve, governed by TC dynamics. All forecast systems have difficulty forecasting an accelerating rate of change, or a large second derivative of the intensity–time curve. TPM may also be useful as a baseline in evaluating the skill of official forecasts. According to this baseline, official forecasts are more skillful in RW than in RI.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off