UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records

UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records Historically, meteorological observations have been made for operational forecasting rather than long-term monitoring purposes, so that there have been numerous changes in instrumentation and procedures. Hence to create climate quality datasets requires the identification, estimation, and removal of many nonclimatic biases from the historical data. Construction of a number of new tropospheric temperature climate datasets has highlighted previously unrecognized uncertainty in multidecadal temperature trends aloft. The choice of dataset can even change the sign of upper-air trends relative to those reported at the surface. So structural uncertainty introduced unintentionally through dataset construction choices is important and needs to be understood and mitigated. A number of ways that this could be addressed for historical records are discussed, as is the question of How it needs to be reduced through future coordinated observing systems with long-term monitoring as a driver, enabling explicit calculation, and removal of nonclimatic biases. Although upper-air temperature records are used to illustrate the arguments, it is strongly believed that the findings are applicable to all long-term climate datasets and variables. A full characterization of observational uncertainty is as vitally important as recent intensive efforts to understand climate model uncertainties if the goal to rigorously reduce the uncertainty regarding both past and future climate changes is to be achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records

Loading next page...
 
/lp/ams/uncertainties-in-climate-trends-lessons-from-upper-air-temperature-yjfDjNltJ2
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-86-10-1437
Publisher site
See Article on Publisher Site

Abstract

Historically, meteorological observations have been made for operational forecasting rather than long-term monitoring purposes, so that there have been numerous changes in instrumentation and procedures. Hence to create climate quality datasets requires the identification, estimation, and removal of many nonclimatic biases from the historical data. Construction of a number of new tropospheric temperature climate datasets has highlighted previously unrecognized uncertainty in multidecadal temperature trends aloft. The choice of dataset can even change the sign of upper-air trends relative to those reported at the surface. So structural uncertainty introduced unintentionally through dataset construction choices is important and needs to be understood and mitigated. A number of ways that this could be addressed for historical records are discussed, as is the question of How it needs to be reduced through future coordinated observing systems with long-term monitoring as a driver, enabling explicit calculation, and removal of nonclimatic biases. Although upper-air temperature records are used to illustrate the arguments, it is strongly believed that the findings are applicable to all long-term climate datasets and variables. A full characterization of observational uncertainty is as vitally important as recent intensive efforts to understand climate model uncertainties if the goal to rigorously reduce the uncertainty regarding both past and future climate changes is to be achieved.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 16, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial