UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records

UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records Historically, meteorological observations have been made for operational forecasting rather than long-term monitoring purposes, so that there have been numerous changes in instrumentation and procedures. Hence to create climate quality datasets requires the identification, estimation, and removal of many nonclimatic biases from the historical data. Construction of a number of new tropospheric temperature climate datasets has highlighted previously unrecognized uncertainty in multidecadal temperature trends aloft. The choice of dataset can even change the sign of upper-air trends relative to those reported at the surface. So structural uncertainty introduced unintentionally through dataset construction choices is important and needs to be understood and mitigated. A number of ways that this could be addressed for historical records are discussed, as is the question of How it needs to be reduced through future coordinated observing systems with long-term monitoring as a driver, enabling explicit calculation, and removal of nonclimatic biases. Although upper-air temperature records are used to illustrate the arguments, it is strongly believed that the findings are applicable to all long-term climate datasets and variables. A full characterization of observational uncertainty is as vitally important as recent intensive efforts to understand climate model uncertainties if the goal to rigorously reduce the uncertainty regarding both past and future climate changes is to be achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

UNCERTAINTIES IN CLIMATE TRENDS: Lessons from Upper-Air Temperature Records

Loading next page...
 
/lp/ams/uncertainties-in-climate-trends-lessons-from-upper-air-temperature-yjfDjNltJ2
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-86-10-1437
Publisher site
See Article on Publisher Site

Abstract

Historically, meteorological observations have been made for operational forecasting rather than long-term monitoring purposes, so that there have been numerous changes in instrumentation and procedures. Hence to create climate quality datasets requires the identification, estimation, and removal of many nonclimatic biases from the historical data. Construction of a number of new tropospheric temperature climate datasets has highlighted previously unrecognized uncertainty in multidecadal temperature trends aloft. The choice of dataset can even change the sign of upper-air trends relative to those reported at the surface. So structural uncertainty introduced unintentionally through dataset construction choices is important and needs to be understood and mitigated. A number of ways that this could be addressed for historical records are discussed, as is the question of How it needs to be reduced through future coordinated observing systems with long-term monitoring as a driver, enabling explicit calculation, and removal of nonclimatic biases. Although upper-air temperature records are used to illustrate the arguments, it is strongly believed that the findings are applicable to all long-term climate datasets and variables. A full characterization of observational uncertainty is as vitally important as recent intensive efforts to understand climate model uncertainties if the goal to rigorously reduce the uncertainty regarding both past and future climate changes is to be achieved.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 16, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off